Discrete sizing optimization of steel trusses under multiple displacement constraints and load cases using guided stochastic search technique

Azad, S. Kazemzadeh
Hasançebi, Oğuzhan
The guided stochastic search (GSS) is a computationally efficient design optimization technique, which is originally developed for discrete sizing optimization problems of steel trusses with a single displacement constraint under a single load case. The present study aims to investigate the GSS in a more general class of truss sizing optimization problems subject to multiple displacement constraints and load cases. To this end, enhancements of the GSS are proposed in the form of two alternative approaches that enable the technique to deal with multiple displacement/load cases. The first approach implements a methodology in which the most critical displacement direction is considered only when guiding the search process. The second approach, however, takes into account the cumulative effect of all the critical displacement directions in the course of optimization. Advantage of the integrated force method of structural analysis is also utilized for further reduction of the computational effort in these approaches. The proposed enhancements of GSS are investigated and compared with some selected techniques of design optimization through six truss structures that are sized for minimum weight. The numerical results reveal that both enhancements generally provide promising solutions with an insignificant computational effort.


Computationally efficient discrete sizing of steel frames via guided stochastic search heuristic
Azad, S. Kazemzadeh; Hasançebi, Oğuzhan (2015-08-01)
Recently a design-driven heuristic approach named guided stochastic search (GSS) technique has been developed by the authors as a computationally efficient method for discrete sizing optimization of steel trusses. In this study, an extension and reformulation of the GSS technique are proposed for its application to problems from discrete sizing optimization of steel frames. In the GSS, the well-known principle of virtual work as well as the information attained in the structural analysis and design stages a...
A reformulation of the ant colony optimization algorithm for large scale structural optimization
Hasançebi, Oğuzhan; Saka, M.p. (2011-01-01)
This study intends to improve performance of ant colony optimization (ACO) method for structural optimization problems particularly with many design variables or when design variables are chosen from large discrete sets. The algorithm developed with ACO method employs the so-called pheromone scaling approach to overcome entrapment of the search in a poor local optimum and thus to recover efficiency of the method for large-scale optimization problems. Besides, a new formulation is proposed for the local upda...
Discrete Sizing of Steel Frames Using Adaptive Dimensional Search Algorithm
Hasançebi, Oğuzhan (Periodica Polytechnica Budapest University of Technology and Economics, 2019-01-01)
Adaptive dimensional search (ADS) algorithm is a recently proposed metaheuristic optimization technique for discrete structural optimization problems. In this study, discrete sizing optimization problem of steel frames is tackled using the ADS algorithm. An important feature of the algorithm is that it does not use any metaphor as an underlying principle for its implementation. Instead, the algorithm employs an efficient performance-oriented methodology at each iteration for convergence to the optimum or a ...
Harmony search algorithms in structural engineering
Saka, M.P.; Aydogdu, I.; Hasançebi, Oğuzhan; Geem, Z.W. (2011-08-08)
Harmony search method is widely applied in structural design optimization since its emergence. These applications have shown that harmony search algorithm is robust, effective and reliable optimization method. Within recent years several enhancements are suggested to improve the performance of the algorithm. Among these Mandavi has presented two versions of harmony search methods. He named these as improved harmony search method and global best harmony search method. Saka and Hasancebi (2009) have suggested...
Improving the performance of simulated annealing in structural optimization
Hasançebi, Oğuzhan; Saka, Mehmet Polat (2010-03-01)
This study aims at improving the performance of simulated annealing (SA) search technique in real-size structural optimization applications with practical design considerations. It is noted that a standard SA algorithm usually fails to produce acceptable solutions to such problems associated with its poor convergence characteristics and incongruity with theoretical considerations. In the paper novel approaches are developed and incorporated into the standard SA algorithm to eliminate the observed drawbacks ...
Citation Formats
S. K. Azad and O. Hasançebi, “Discrete sizing optimization of steel trusses under multiple displacement constraints and load cases using guided stochastic search technique,” STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, pp. 383–404, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40199.