Computationally efficient discrete sizing of steel frames via guided stochastic search heuristic

2015-08-01
Azad, S. Kazemzadeh
Hasançebi, Oğuzhan
Recently a design-driven heuristic approach named guided stochastic search (GSS) technique has been developed by the authors as a computationally efficient method for discrete sizing optimization of steel trusses. In this study, an extension and reformulation of the GSS technique are proposed for its application to problems from discrete sizing optimization of steel frames. In the GSS, the well-known principle of virtual work as well as the information attained in the structural analysis and design stages are used together to guide the optimization process. A design wise strategy is employed in the technique where resizing of members is performed with respect to their role in satisfying strength and displacement constraints. The performance of the GSS is investigated through optimum design of four steel frame structures according to AISC-LRFD specifications. The numerical results obtained demonstrate that the GSS can be employed as a computationally efficient design optimization tool for practical sizing optimization of steel frames.
COMPUTERS & STRUCTURES

Suggestions

Discrete sizing optimization of steel trusses under multiple displacement constraints and load cases using guided stochastic search technique
Azad, S. Kazemzadeh; Hasançebi, Oğuzhan (2015-08-01)
The guided stochastic search (GSS) is a computationally efficient design optimization technique, which is originally developed for discrete sizing optimization problems of steel trusses with a single displacement constraint under a single load case. The present study aims to investigate the GSS in a more general class of truss sizing optimization problems subject to multiple displacement constraints and load cases. To this end, enhancements of the GSS are proposed in the form of two alternative approaches t...
Guided stochastic search technique for discrete sizing optimization of steel trusses: A design-driven heuristic approach
Azad, S. Kazemzadeh; Hasançebi, Oğuzhan; Saka, M. P. (Elsevier BV, 2014-04-01)
This study presents a design-driven heuristic approach named guided stochastic search (GSS) technique for discrete sizing optimization of steel trusses. The method works on the basis of guiding the optimization process using the well-known principle of virtual work as well as the information collected during the structural analysis and design stages. The performance of the proposed technique is investigated through a benchmark truss instance as well as four real-size trusses sized for minimum weight accordi...
Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization
Hasançebi, Oğuzhan (2015-07-01)
In the present study a new metaheuristic algorithm called adaptive dimensional search (ADS) is proposed for discrete truss sizing optimization problems. The robustness of the ADS lies in the idea of updating search dimensionality ratio (SDR) parameter online during the search for a rapid and reliable convergence towards the optimum. In addition, several alternative stagnation-control strategies are integrated with the algorithm to escape from local optima, in which a limited uphill (non-improving) move is p...
Improving the performance of simulated annealing in structural optimization
Hasançebi, Oğuzhan; Saka, Mehmet Polat (2010-03-01)
This study aims at improving the performance of simulated annealing (SA) search technique in real-size structural optimization applications with practical design considerations. It is noted that a standard SA algorithm usually fails to produce acceptable solutions to such problems associated with its poor convergence characteristics and incongruity with theoretical considerations. In the paper novel approaches are developed and incorporated into the standard SA algorithm to eliminate the observed drawbacks ...
Computationally enhanced techniques for practical optimum design of steel structures
Kazemzadeh Azad, Saeid; Hasançebi, Oğuzhan; Department of Civil Engineering (2014)
Practical optimum design of structural systems via modern metaheuristic algorithms suffers from enormously time-consuming structural analyses to locate a reasonable design. This study is an attempt to reduce the computational effort of optimization process involved in real-life applications through development of alternative techniques to the existing computationally expensive methods. Basically two main approaches are considered as (i) investigating the algorithmic structure of the existing metaheuristics ...
Citation Formats
S. K. Azad and O. Hasançebi, “Computationally efficient discrete sizing of steel frames via guided stochastic search heuristic,” COMPUTERS & STRUCTURES, pp. 12–28, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44252.