Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effective gene expression data generation framework based on multi-model approach
Date
2016-06-01
Author
Sirin, Utku
Erdogdu, Utku
Polat, Faruk
TAN, MEHMET
Alhajj, Reda
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
206
views
0
downloads
Cite This
Objective: Overcome the lack of enough samples in gene expression data sets having thousands of genes but a small number of samples challenging the computational methods using them.
Subject Keywords
Medicine (miscellaneous)
,
Artificial Intelligence
URI
https://hdl.handle.net/11511/40248
Journal
ARTIFICIAL INTELLIGENCE IN MEDICINE
DOI
https://doi.org/10.1016/j.artmed.2016.05.003
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Scalable approach for effective control of gene regulatory networks
Tan, Mehmet; Alhajj, Reda; Polat, Faruk (Elsevier BV, 2010-01-01)
Objective: Interactions between genes are realized as gene regulatory networks (GRNs). The control of such networks is essential for investigating issues like different diseases. Control is the process of studying the states and behavior of a given system under different conditions. The system considered in this study is a gene regulatory network (GRN), and one of the most important aspects in the control of GRNs is scalability. Consequently, the objective of this study is to develop a scalable technique th...
Improving reinforcement learning by using sequence trees
Girgin, Sertan; Polat, Faruk; Alhajj, Reda (Springer Science and Business Media LLC, 2010-12-01)
This paper proposes a novel approach to discover options in the form of stochastic conditionally terminating sequences; it shows how such sequences can be integrated into the reinforcement learning framework to improve the learning performance. The method utilizes stored histories of possible optimal policies and constructs a specialized tree structure during the learning process. The constructed tree facilitates the process of identifying frequently used action sequences together with states that are visit...
Nuclear Fission-Nuclear Fusion algorithm for global optimization: a modified Big Bang-Big Crunch algorithm
YALÇIN, YAĞIZER; Pekcan, Onur (Springer Science and Business Media LLC, 2020-04-01)
This study introduces a derivative of the well-known optimization algorithm, Big Bang-Big Crunch (BB-BC), named Nuclear Fission-Nuclear Fusion-based BB-BC, simply referred to as N2F. Broadly preferred in the engineering optimization community, BB-BC provides accurate solutions with reasonably fast convergence rates for many engineering problems. Regardless, the algorithm often suffers from stagnation issues. More specifically, for some problems, BB-BC either converges prematurely or exploits the promising r...
Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition
Buyuksahin, Umit Cavus; Ertekin Bolelli, Şeyda (Elsevier BV, 2019-10-07)
Many applications in different domains produce large amount of time series data. Making accurate forecasting is critical for many decision makers. Various time series forecasting methods exist that use linear and nonlinear models separately or combination of both. Studies show that combining of linear and nonlinear models can be effective to improve forecasting performance. However, some assumptions that those existing methods make, might restrict their performance in certain situations. We provide a new Au...
Resampling approach for cluster model selection
Volkovich, Z.; Barzily, Z.; Weber, Gerhard Wilhelm; Toledano-Kitai, D.; Avros, R. (Springer Science and Business Media LLC, 2011-10-01)
In cluster analysis, selecting the number of clusters is an "ill-posed" problem of crucial importance. In this paper we propose a re-sampling method for assessing cluster stability. Our model suggests that samples' occurrences in clusters can be considered as realizations of the same random variable in the case of the "true" number of clusters. Thus, similarity between different cluster solutions is measured by means of compound and simple probability metrics. Compound criteria result in validation rules em...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Sirin, U. Erdogdu, F. Polat, M. TAN, and R. Alhajj, “Effective gene expression data generation framework based on multi-model approach,”
ARTIFICIAL INTELLIGENCE IN MEDICINE
, pp. 41–61, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40248.