Diversity performance of microstrip patch antennas placed on human body at ISM and MBAN frequencies

Ozturk, Mehmet Ali
Tamer, Ufuk
Yılmaz, Ali Özgür
Ozdemir, Tayfun
In this study, the diversity performance of microstrip patch antennas mounted on the chest and the back of a person is investigated in static and dynamic indoor environments at ISM (2.4-2.5 GHz) and medical body area network (2.36-2.4 GHz) bands. Power received by the radios worn by the person while standing and walking is recorded and compared. In addition, antennas are simulated on a human body to study the effect of the human body. The work was done as part of a remote patient monitoring project, and hence the effectiveness of the antenna diversity in the indoor data communications and the impact of the human body on the quality of the communication linked were studied as well.


Pattern reconfigurable antenna designs insub-6 ghz band for 5g applications
Çelik, Feza Turgay; Aydın Çivi, Hatice Özlem; Alatan, Lale; Department of Aerospace Engineering (2021-2-08)
In this thesis, design,simulations,fabrication, and radiation pattern measurementsof reconfigurable antennas for sub-6GHz application of 5G protocol are presented. Modeanalysis techniquesand array theory areemployed to have anunderstanding ofthe pattern reconfigurability conceptof the designs.As a first step, adual-fed rectangular patch antenna is designed,simulated,fabricated,and then measured. Even and odd mode definitions onthe rectangular patch antennas are employed in the design pr...
Three Dimensional Microfabricated Broadband Patch and Multifunction Reconfigurable Antennae for 60 GHz Applications
Hunerli, H. V.; Mopidevi, H.; Cagatay, E.; Imbert, M.; Romeu, J.; Jofre, L.; Cetiner, B. A.; BIYIKLI, NECMİ (2015-05-17)
In this paper we present two antenna designs capable of covering the IEEE 802.11ad (WiGig) frequency band (57-66 GHz and 59-66 GHz respectively). The work below reports the design, microfabrication and characterization of a broadband patch antenna along with the design and microfabrication of multifunction reconfigurable antenna (MRA) in its static form excluding active switching. The first design is a patch antenna where the energy is coupled with a conductor-backed (CB) coplanar waveguide (CPW)-fed loop s...
Development of multiband microstrip antennas for GPS applications
Önder, Mustafa Caner; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2019)
In this thesis study, the design, fabrication and measurements of dualband and triband circularly polarized microstrip antennas for GPS applications are presented. Characteristic mode analysis technique is applied to get an insight into circularly polarized patch antennas. A design flow is presented for a circularly polarized L1 GPS band microstrip antenna by using characteristic mode analysis. A single fed L1/L2 GPS band right hand circularly polarized four-slotted patch antenna is designed by using reacti...
Analysis and design of active annular ring coupled circular patch antenna
Gebeşoğlu, Durmuş; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2017)
This thesis includes the design, production and measurement of the active, dual band annular ring coupled circular patch antenna. The dual band operation is achieved by using stacked patches. 3 dB hybrid is used to obtain circular polarization. Effects of antenna parameters on the input impedance and frequency ratio between the resonance frequencies are observed. Design has been achieved step by step. Firstly, dual band operation is investigated by using stacked patches. An annular ring antenna and a circul...
Design and analysis of ultra-wideband (UWB) printed monopole antennas of circular shape
Karadağ, Serkan; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2017)
This study proposes three microstrip line fed circular monopole antennas with ultra-wideband (UWB) characteristics, improved omnidirectional radiation pattern and WLAN (5 GHz-6 GHz) band notched characteristics for wireless and mobile communication systems. In this thesis, first, a microstrip line fed ultra-wideband ring monopole antenna with improved omnidirectional radiation pattern is designed, fabricated and measured. Two corners are tapered on the ground plane for increasing impedance bandwidth. In ord...
Citation Formats
M. A. Ozturk, U. Tamer, A. Ö. Yılmaz, T. Ozdemir, and İ. KAYA, “Diversity performance of microstrip patch antennas placed on human body at ISM and MBAN frequencies,” 2017, vol. 62, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40377.