Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of the Linear Stability Problem of Electrified Jets, Inviscid Analysis
Download
index.pdf
Date
2012-09-01
Author
Özgen, Serkan
Uzol, Oğuz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
211
views
0
downloads
Cite This
The instability characteristics of a liquid jet discharging from a nozzle into a stagnant gas are investigated using the linear stability theory. Starting with the equations of motion for incompressible, inviscid, axisymmetric flows in cylindrical coordinates, a dispersion relation is obtained, where the amplification factor of the disturbance is related to its wave number. The parameters of the problem are the laminar velocity profile shape parameter, surface tension, fluid densities, and electrical charge of the liquid jet. The dispersion relation is numerically solved as a function of the wave number. The growth of instabilities occurs in two modes, the Rayleigh and atomization modes. For rWe < 1 (where We represents the Weber number and r represents the gas-to-liquid density ratio) corresponds to a Rayleigh or long wave instability, where atomization does not occur. On the contrary, for rWe >> 1 the waves at the liquid-gas interface are shorter and when they reach a threshold amplitude the jet breaks down or atomizes. The surface tension stabilizes the flow in the atomization regime, while the density stratification and electric charges destabilize it. Additionally, a fully developed flow is more stable compared to an underdeveloped one. For the Rayleigh regime, both the surface tension and electric charges destabilize the flow. [DOI: 10.1115/1.4007157]
Subject Keywords
LIQUID JET
,
HIGH-VELOCITY
,
ATOMIZATION
,
INSTABILITY
URI
https://hdl.handle.net/11511/40392
Journal
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
DOI
https://doi.org/10.1115/1.4007157
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
ANALYTICAL EXPRESSIONS FOR LIQUID-COLUMN VELOCITIES IN PIPELINES WITH ENTRAPPED GAS
Tijsseling, Arris S.; Hou, Qingzhi; Bozkuş, Zafer (2015-01-01)
High pressures and high temperatures may arise in pipelines when a liquid column is suddenly accelerated into a gas pocket trapped at a closed end. A mass oscillation occurs that is described by nonlinear equations for both liquid and gas. Analytical expressions are derived for the uniform velocity of the liquid column, from which pressures and gas temperatures follow. The obtained results are validated against theoretical and experimental results published by fellow researchers.
Derivation of the parallel PIC/MCC numerical code and its application to the kinetic analysis of photoresonance plasma and the problem of identification of impurities within the PLES method
Kuşoğlu Sarıkaya, Cemre; Rafatov, İsmail; Department of Physics (2017)
1d3v Particle in Cell/Monte Carlo Collision (PIC/MCC) code for numerical simulations of gas discharge plasma was developed. The efficiency of the code was increased by its parallelization using Open MPI. In order to verify the applicability of the code, the benchmark tests were performed under the RF capacitively coupled discharge conditions. The effects of the particle weighting and the Courant number on the computed plasma properties were examined and the convergence of the numerical method with respect t...
Investigation of air bubble motion in counter-current water flow conditions
Bezdegümeli, Uğur; Yeşin, Ahmet Orhan; Department of Mechanical Engineering (2003)
In this thesis study, air bubble motion in counter-current water flow conditions in a vertical pipe is investigated experimentally. For this purpose, a test set-up was designed and constructed. Images of motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, generated by specially designed bubble injectors were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to obtain the necessary data for the The purpose of the study is...
Development of an iterative method for liquid-propellant combustion chamber instability analysis
Cengiz, Kenan; Özyörük, Yusuf; Department of Aerospace Engineering (2010)
Controlling unsteady combustion induced gas flow fluctuations and the resultant motor vibrations is a very significant step in rocket motor design. It occurs when the unsteady heat release due to combustion happens to feed the acoustic oscillations of the closed duct forming a feed-back system. The resultant vibrations concerned may even lead to total failure of the rocket system unless analysed and tested thoroughly. This thesis aims developing a linear numerical analysis method for the growth rate of inst...
Analysis of stress in a solid cylinder with periodic heat generation
Varlı, Ekin; Eraslan, Ahmet Nedim; Department of Engineering Sciences (2015)
Thermoelastic stress response of a periodic heat generating solid cylinder is investigated by analytical means. The cylinder is initially at zero temperature. For times greater than zero, heat is generated internally and slowly at a time dependent rate. Two periodic heat generation rates are used. The temperature distribution in the solid cylinder corresponding to each generation rate is obtained by making use of Duhamel’s theorem. An uncoupled thermoelastic solution of the solid cylinder is then obtained u...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Özgen and O. Uzol, “Investigation of the Linear Stability Problem of Electrified Jets, Inviscid Analysis,”
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
, pp. 0–0, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40392.