ANALYTICAL EXPRESSIONS FOR LIQUID-COLUMN VELOCITIES IN PIPELINES WITH ENTRAPPED GAS

2015-01-01
Tijsseling, Arris S.
Hou, Qingzhi
Bozkuş, Zafer
High pressures and high temperatures may arise in pipelines when a liquid column is suddenly accelerated into a gas pocket trapped at a closed end. A mass oscillation occurs that is described by nonlinear equations for both liquid and gas. Analytical expressions are derived for the uniform velocity of the liquid column, from which pressures and gas temperatures follow. The obtained results are validated against theoretical and experimental results published by fellow researchers.

Suggestions

Analytical Solutions for Liquid Slugs and Pigs Traveling in Pipelines with Entrapped Gas
TİJSSELİNG, Arris S; QİNGZHİ, Hou; Bozkuş, Zafer (2017-07-20)
Liquid slugs have a relatively low mass and can therefore when they occupy a full cross-section of a pipeline be accelerated to very high velocities by means of pressurized gas. When entrapped gas pockets are present, pressures and temperatures may become dangerously high. Simple models and analytical solutions are derived and used to predict transient velocities, pressures and temperatures. The models have a generic character as they also describe the basics of breaking surface waves impacting on a wall, a...
Analytical and Numerical Solution for a Rigid Liquid Column Moving in a Pipe with Fluctuating Reservoir Head and Venting Entrapped Gas
TİJSSELİNG, Arris S; HOU, Qingzhi; Bozkuş, Zafer (2016-07-21)
The motion of liquid filling a pipeline is impeded when the gas ahead of it cannot escape freely. Trapped gas will lead to a significant pressure build-up in front of the liquid column, which slows down the column and eventually bounces it back. This paper is an extension of previous work by the authors in the sense that the trapped gas can escape through a vent. Another addition is that the driving pressure is not kept constant but fluctuating. The obtained analytical and numerical solutions are utilized i...
Experimental research on in-tube condensation under steady-state and transient conditions
Tanrikut, A; Yesin, O (2005-01-01)
In this research study, in-tube condensation in the presence of air was investigated experimentally at a heat exchanger of countercurrent type for different operating conditions. The test matrix for the steady-state condition covers the range of pressures P = 1.8 to 5.5 bars, vapor Reynolds numbers Re, = 45 000 to 94 000, and inlet air mass fraction values Xi = 0 to 52%. The effect of air manifests itself by a reduction in the local heat flux and the local heat transfer coefficient. The local heat transfer ...
Estimation of the formation temperature from the inlet and outlet mud temperatures while drilling geothermal formations
Tekin, Sema; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2010)
Formation temperature is an important parameter in geothermal drilling since it affects all the components of the system such as drilling fluid, drilling operations and equipment through mud temperatures. The main objective of this study is to estimate the formation temperatures of five geothermal wells in Germencik-Ömerbeyli geothermal field by using inlet and outlet mud temperatures obtained during drilling. For this purpose, GTEMP, a wellbore thermal simulation model is used to simulate the process of dr...
Investigation of the Linear Stability Problem of Electrified Jets, Inviscid Analysis
Özgen, Serkan; Uzol, Oğuz (2012-09-01)
The instability characteristics of a liquid jet discharging from a nozzle into a stagnant gas are investigated using the linear stability theory. Starting with the equations of motion for incompressible, inviscid, axisymmetric flows in cylindrical coordinates, a dispersion relation is obtained, where the amplification factor of the disturbance is related to its wave number. The parameters of the problem are the laminar velocity profile shape parameter, surface tension, fluid densities, and electrical charge...
Citation Formats
A. S. Tijsseling, Q. Hou, and Z. Bozkuş, “ANALYTICAL EXPRESSIONS FOR LIQUID-COLUMN VELOCITIES IN PIPELINES WITH ENTRAPPED GAS,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47760.