Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
CO2 injection into saline carbonate aquifer formations I: laboratory investigation
Date
2008-03-01
Author
Izgec, Omer
Demiral, Birol
Bertin, Henri
Akın, Serhat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
250
views
0
downloads
Cite This
Although there are a number of mathematical modeling studies for carbon dioxide (CO2) injection into aquifer formations, experimental studies are limited and most studies focus on injection into sandstone reservoirs as opposed to carbonate ones. This study presents the results of computerized tomography (CT) monitored laboratory experiments to analyze permeability and porosity changes as well as to characterize relevant chemical reactions associated with injection and storage of CO2 in carbonate formations. CT monitored experiments are designed to model fast near well bore flow and slow reservoir flows. Highly heterogeneous cores drilled from a carbonate aquifer formation located in South East Turkey were used during the experiments. Porosity changes along the core plugs and the corresponding permeability changes are reported for different CO2 injection rates and different salt concentrations of formation water. It was observed that either a permeability increase or a permeability reduction can be obtained. The trend of change in rock properties is very case dependent because it is related to distribution of pores, brine composition and thermodynamic conditions. As the salt concentration decreases, porosity and the permeability decreases are less pronounced. Calcite deposition is mainly influenced by orientation, with horizontal flow resulting in larger calcite deposition compared to vertical flow.
Subject Keywords
General Chemical Engineering
,
Catalysis
URI
https://hdl.handle.net/11511/40403
Journal
TRANSPORT IN POROUS MEDIA
DOI
https://doi.org/10.1007/s11242-007-9132-5
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Experimental investagation of drag reduction effects of polymer additives on turbulent pipe flow
Zeybek, Şerife; Uludağ, Yusuf; Department of Chemical Engineering (2005)
Since the discovery of the drag reduction effects of even small amount of macromolecules in solutions in turbulent pipe flows, there have been many experimental and theoretical studies in order to understand mechanisms behind this phenomenon. Theories have been proposed based on the observations on the change in the characteristics of the turbulent flow near the pipe wall where friction of the momentum transfer between the flow and the conduit takes place. In this study drag reduction in fully developed tur...
Comparison of Fenitrothion and Trifluralin Adsorption on Organo-Zeolites and Activated Carbon. Part II: Thermodynamic Parameters and the Suitability of the Kinetic Models of Pesticide Adsorption
LÜLE ŞENÖZ, Güzide Meltem; Atalay, Mustafa Ümit (Informa UK Limited, 2014-07-04)
The suitability of two kinetic models and the thermodynamic parameters of pesticide adsorption were investigated based on obtained data of previous studies. Kinetic evaluation indicated that the pesticides adsorption on adsorbents followed the pseudo-second-order model. Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (Delta S degrees) were calculated for thermodynamic parameters by using linearized Arrhenius equation. The results indicated that the sorption process of fenitrothi...
Cytochrome P4501A and associated mixed-function oxidase induction in fish as a biomarker for toxic carcinogenic pollutants in the aquatic environment
Arinc, E; Sen, A; Bozcaarmutlu, A (Walter de Gruyter GmbH, 2000-06-01)
Polycyclic aromatic hydrocarbons (PAHs), dioxins, dibenzofurans, and polychlorinated biphenyls (PCBs) present in polluted environment induce cytochrome P4501A (CYP1A) isozyme in fish, which in turn results in a marked increased production of carcinogenic metabolites from PAHs. The induction of hepatic CYP1A in fish by certain classes of chemicals has been suggested as an early warning system, a "most sensitive biological response" for assessing environmental contamination conditions. This has implications f...
Vulcan-Supported Pt Electrocatalysts for PEMFCs Prepared using Supercritical Carbon Dioxide Deposition
Bayrakceken, Ayse; Smirnova, Alevtina; Kitkamthorn, Usanee; Aindow, Mark; Tuerker, Lemi; Eroğlu, İnci; ERKEY, CAN (Informa UK Limited, 2009-01-01)
In this study, supercritical carbon dioxide (scCO(2)) deposition was used to prepare vulcan-supported Pt (Pt/Vulcan) electrocatalysts for proton exchange membrane fuel cells (PEMFCs), and the effects of process variables on the properties of the electrocatalysts were investigated. The two different methods used to reduce the organometallic precursor were thermal reduction in nitrogen at atmospheric pressure and thermal reduction in scCO(2). In the former method, the maximum Pt loading achieved was 9%, and t...
Sorption enhanced ethanol reforming over cobalt, nickel incorporated mcm-41 for hydrogen production
Gündüz, Seval; Doğu, Timur; Department of Chemical Engineering (2011)
The interest in hydrogen as a clean energy source has increased due to depletion of limited fossil resources and environmental impact related to CO2 emissions. Hydrogen production from bio-ethanol, which already contains large amount of water, by steam reforming reaction, has shown excellent potential with CO2 neutrality. However, steam reforming of ethanol reaction is a highly complex process including many side reactions which decrease hydrogen yield and have a negative effect on process economy. Also, th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Izgec, B. Demiral, H. Bertin, and S. Akın, “CO2 injection into saline carbonate aquifer formations I: laboratory investigation,”
TRANSPORT IN POROUS MEDIA
, pp. 1–24, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40403.