Accuracy of Sources and Near-Zone Fields When Using Potential Integral Equations at Low Frequencies

Gur, Ugur Meric
Ergül, Özgür Salih
We consider method-of-moments solutions of the recently developed potential integral equations (PIEs) for low-frequency electromagnetic problems involving perfectly conducting objects. The electric current density, electric charge density, and near-zone fields calculated by using PIEs are investigated at low frequencies, in contrast to those obtained via the conventional electric-field integral equation (EFIE). We show that: 1) the charge density can accurately be found by using EFIE despite the very poor accuracy in the current density; 2) using PIEs instead of EFIE leads to accurate computations of the dominating solenoidal part of the current density, while the vanishingly small irrotational part and the charge density become inaccurate; 3) it is possible to accurately compute the charge density, in addition to the current density, when using PIEs, but at the cost of a solution of an additional integral equation. Numerical examples involving spherical objects are presented to demonstrate the accuracy of sources and near-zone fields when PIEs and EFIE are used.


Fast-Multipole-Method Solutions of New Potential Integral Equations
Gür, Uğur Meriç; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-09-27)
A recently introduced potential integral equations for stable analysis of low-frequency problems involving dense discretizations with respect to wavelength are solved by using the fast multipole method (FMM). Two different implementations of FMM based on multipoles and an approximate diagonalization employing scaled plane waves are developed and used for rigorous solutions of low-frequency problems. Numerical results on canonical problems demonstrate excellent stability and solution capabilities of both imp...
Modified Combined Tangential Formulation for Stable and Accurate Analysis of Plasmonic Structures
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-03-30)
We present a modified combined tangential formulation (MCTF) for stable solutions of plasmonic problems involving metallic objects that are modeled as penetrable structures. For a wide range of negative real permittivity values, corresponding to the varying characteristics of the metals at infrared and visible frequencies, MCTF provides both accurate and efficient solutions in comparison to the conventional formulations. We explain the stability of MCTF in terms of the discretized operators for the limit ca...
Improving the accuracy of the surface integral equations for low-contrast dielectric scatterers
Ergül, Özgür Salih (2007-06-15)
Solutions of scattering problems involving low-contrast dielectric objects are considered by employing surface integral equations. A stabilization procedure based on extracting the non-radiating part of the induced currents is applied so that the remaining radiating currents can be modelled appropriately and the scattered fields from the low-contrast objects can be calculated with improved accuracy. Stabilization is applied to both tangential (T) and normal (N) formulations in order to use the benefits of d...
Broadband Analysis of Multiscale Electromagnetic Problems: Novel Incomplete-Leaf MLFMA for Potential Integral Equations
Khalichi, Bahram; Ergül, Özgür Salih; Takrimi, Manouchehr; Erturk, Vakur B. (2021-12-01)
Recently introduced incomplete tree structures for the magnetic-field integral equation are modified and used in conjunction with the mixed-form multilevel fast multipole algorithm (MLFMA) to employ a novel broadband incomplete-leaf MLFMA (IL-MLFMA) to the solution of potential integral equations (PIEs) for scattering/radiation from multiscale open and closed surfaces. This population-based algorithm deploys a nonuniform clustering that enables to use deep levels safely and, when necessary, without compromi...
Exact solutions of the radial Schrodinger equation for some physical potentials
IKHDAİR, SAMEER; Sever, Ramazan (2007-12-01)
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrodinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Citation Formats
U. M. Gur and Ö. S. Ergül, “Accuracy of Sources and Near-Zone Fields When Using Potential Integral Equations at Low Frequencies,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, pp. 2783–2786, 2017, Accessed: 00, 2020. [Online]. Available: