Computer-aided optimum design of steel tubular telescopic pole structures

This paper presents a computer-aided approach for the optimum design of steel tubular telescopic pole structures. The author's experience in steel pole structure's design is implemented in a computer program called ODAPS (optimum design and analysis of pole structures). Although several other computer programs exist for the analysis and design of steel tubular pole structures, they are limited to cases where dimensions are pre-defined by the user. Different from these conventional programs, the developed program is able to automatically design the pole structure having the lightest weight that satisfies the limits states criteria within given geometrical boundary conditions. Simple equations and charts for the design of poles of different steel grade and having different length, subjected to various point loads at their top, are obtained using this program. It is possible to obtain economical designs for pole structures subjected to a specified loading using these equations or charts. Copyright (C) 1996 Elsevier Science Ltd.


Optimizing Single-Span Steel Truss Bridges with Simulated Annealing
Hasançebi, Oğuzhan (2010-11-01)
This study presents applications of a simulated annealing integrated solution algorithm to the optimum design of single-span steel truss bridges subjected to gravity loadings. In the optimum design process of a bridge the members are sized simultaneously as the coordinates of the upper chord nodes are determined such that the least design weight is attained for the structure. The design constraints and limitations are imposed in accordance with serviceability and strength provisions of ASD-AISC (Allowable S...
Magnetic and Structural Analysis of a Transverse Flux Claw Pole Linear Machine
Keysan, Ozan; Mueller, Markus A. (2013-01-01)
This paper details the design and testing of a novel transverse flux claw pole linear machine suitable for large superconducting generators. The machine utilises a modular claw pole transducer design with a stationary field winding which eliminates the need for cryogenic couplers and electrical brushes for a superconducting machine. The results from this prototype will enable a better understanding of the electromagnetic and mechanical structures before embarking on a more costly super-conducting design. Th...
Rigorous designs of nano-optical couplers and absorbers with photonic crystals involving irregular arrays and nonidentical elements
Yazar, Şirin; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2021-9)
This thesis presents design and analyses of compact and effective nano-optical couplers and absorbers based on photonic crystals. Single-input and double-input nano-optical couplers that provide electromagnetic wave transmission in desired directions are designed, and important parameters regarding their transmission efficiency are investigated. These designs are further cascaded by adding one after another to create nano-optical transmission systems, whose transmission characteristics are also examined. In...
Genetic algorithm based aerodynamic shape optimization of wind turbine rotor blades using a 2-d panel method with a boundary layer solver
Polat, Özge; Tuncer, İsmail Hakkı; Sezer Uzol, Nilay; Department of Aerospace Engineering (2011)
This thesis presents an aerodynamic shape optimization methodology for rotor blades of horizontal axis wind turbines. Genetic Algorithm and Blade Element Momentum Theory are implemented in order to find maximum power production at a specific wind speed, rotor speed and rotor diameter. The potential flow solver, XFOIL, provides viscous aerodynamic data of the airfoils. Optimization variables are selected as the sectional chord length, the sectional twist and the blade profiles at root, mid and tip regions of...
Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER
Tort, Cenk; Sahin, Serkan; Hasançebi, Oğuzhan (2017-01-15)
This paper presents a new optimization tool for automated design of steel lattice transmission line towers in real-world engineering practice. This tool has been developed by integrating the simulated annealing (SA) optimization algorithm into the commercial PLS-TOWER software to optimize steel lattice towers for minimum weight according to ASCE 10-97 design specification using both size and layout design variables. In this context, a novel two-phase SA algorithm is specifically developed and compared with ...
Citation Formats
M. Dicleli, “Computer-aided optimum design of steel tubular telescopic pole structures,” COMPUTERS & STRUCTURES, pp. 961–973, 1997, Accessed: 00, 2020. [Online]. Available: