Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Use of steel fiber reinforced mortar for seismic strengthening
Date
2011-02-01
Author
Sevil, Tugce
BARAN, MEHMET
Bilir, Turhan
Canbay, Erdem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
267
views
0
downloads
Cite This
The objective of this research was to develop an economical, structurally effective, and practically applicable steel fiber reinforced mortar (SFRM) which could be applied onto the hollow brick infills of a reinforced concrete (RC) structure. Masonry walls were almost converted into strong and rigid infills with the application of SFRM. Two different mix proportions were produced with the composition of Portland cement, fine aggregate, water, and plasticizer or bonding agent as the chemical admixture. Tests were carried out to determine the optimum steel fiber content (1%, 2%, or 4% by volume) and to clarify the use of plasticizer or bonding agent in the mortar in the context of sticking ability, flexural, compressive, and adhesion strengths. As a result, mortar with plasticizer and 2% steel fiber (by volume) came out to be the optimum mortar mixture as strengthening material. The performance of RC frame strengthened with SFRM containing plasticizer and 2% steel fiber by volume was compared to those of the hollow brick infilled RC frame without strengthened mortar and the hollow brick infilled RC frame with reference mortar. It was observed that the specimen strengthened with the optimum mortar mix satisfied the target objectives of this study.
Subject Keywords
Steel fiber reinforced mortar
,
Hollow brick infill wall
,
Reinforced concrete
,
Strengthening
URI
https://hdl.handle.net/11511/40607
Journal
CONSTRUCTION AND BUILDING MATERIALS
DOI
https://doi.org/10.1016/j.conbuildmat.2010.06.096
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Seismic Strengthening with Precast Concrete Panels - Theoretical Approach
Baran, Mehmet; Canbay, Erdem; Tankut, Tugrul (2010-01-01)
An economical, structurally effective and practically applicable seismic retrofitting technique has been developed on the basis of the principle of strengthening the existing hollow brick infill walls by using high strength precast concrete panels. The technique would not require evacuation of the building and would be applicable without causing much disturbance to the occupant. For this purpose, a total of eighteen reinforced concrete frames with hollow brick infill walls were tested under reversed cyclic ...
Retrofit of Non-Ductile RC Frames with Precast Concrete (PC) Wall Panels
BARAN, MEHMET; Tankut, Tugrul (2011-12-01)
An economic, structurally effective and practically applicable strengthening method had been developed for reinforced concrete (RC) framed buildings. This study presents the test results on strengthening of deficient RC frames by using high strength precast concrete (PC) panels. The idea of the method is to convert the existing hollow brick infill wall into a load carrying system by bonding PC panels on to the plastered hollow brick infills. For this purpose, six (two reference and four strengthened) one-th...
Strengthening of deficient RC frames with high strength concrete panels: an experimental study
BARAN, MEHMET; Susoy, Melih; Tankut, Tugrul (2011-01-25)
An economic, structurally effective and practically applicable strengthening technique was developed for reinforced concrete (RC) framed buildings. The idea of the technique is to convert the existing hollow brick infill wall into a load carrying system acting as a cast-in-place RC infill wall by bonding relatively thin high strength precast concrete PC panels to the plastered hollow brick infill. For this purpose, a total of eight one-third scale, one bay, one story frames were tested under reversed-cyclic...
Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Effect of specimen size, fiber type and concrete strength on the flexural performance of fiber reinforced concrete
Güzelce, Aydinç; Yaman, İsmail Özgür; Department of Civil Engineering (2019)
To overcome the brittleness of concrete, fiber reinforcement is a commonly used material, which highly increases the toughness of concrete in a cost-effective way. The aim of this study is to assess the effect of different fiber parameters on the flexural behavior of fiber reinforced concrete. Bending tests were performed on two different beam sizes made of 20 different concrete batches. The type and amount of the fibers along with the grade of the concrete were changed to form this batch combination. The f...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Sevil, M. BARAN, T. Bilir, and E. Canbay, “Use of steel fiber reinforced mortar for seismic strengthening,”
CONSTRUCTION AND BUILDING MATERIALS
, pp. 892–899, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40607.