Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance enhancement and comparison of discrete time current regulators for parallel active filters
Date
2007-09-05
Author
Ozkaya, Hasan
Senturk, Osman Selcuk
Hava, Ahmet Masum
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
207
views
0
downloads
Cite This
Discrete time linear and hysteresis current regulators (CR) for three-phase parallel active filters (PAF) are reviewed and evaluated. A novel discrete time hysteresis current regulation method with current oversampling and flexible PWM release capability, DHCR3, which has superior overall performance and simple implementation (no additional hardware) is proposed. Switching ripple filters (SRF) suitable for each CR type are designed. A DSP controlled PAF is designed and built for a three-phase 10 kW diode rectifier load. The CR and PAF performances are verified by means of theory, simulations, and experiments and strong correlation is obtained. The study shows that of various CRs, the synchronous frame resonant filter CR and DHCR3 with appropriate SRF types perform satisfactorily and the latter has much lower implementation complexity and reduced switching losses.
Subject Keywords
Parallel active filter
,
Switching ripple filter
,
VSI
,
PWM
,
Harmonics
,
Hysteresis
,
Current regulator
URI
https://hdl.handle.net/11511/40633
DOI
https://doi.org/10.1109/epe.2007.4417288
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Performance enhancement of discrete time hysteresis current regulators and comparison with linear current regulators for parallel active filters
Oezkaya, Hasan; Sentuerk, Osman Selcuk; Hava, Ahmet Masum (2007-05-05)
In this work discrete time current regulation methods for three-phase parallel active filters (PAF) are investigated. With emphasis on PAF applications, linear and hysteresis current regulation methods are studied and improvements on the discrete time implementation of the latter type without any additional analog hardware are provided. The dependency of the switching ripple filter (SRF) type on the PAF current regulator (CR) type is considered and design methods provided. A PAF is designed for a three-phas...
Design of Microstrip Quadruplet Filters on Filpro
Oruc, Sacid; Yıldırım, Nevzat (2018-11-02)
In this paper, a simple dimensional design procedure is developed for microstrip/stripline quadruplet filters by starting with direct BP synthesis of a lumped quadruplet with inverter couplings, K14, K12, K23 and K34. K14 is the cross-coupling inverter which creates a symmetric pair of finite transmission zeros (FTZ's) if the sign of K14 is opposite of the other inverters while a complex TZ is created if K14 has the same sign as the other inverters leading to linear phase (flat delay) responses. The LC reso...
Investigation on Series Active Filter Compensated High Power Grid-Connected Voltage Source Inverters with LCL Filter
Usluer, S. Nadir; Hava, Ahmet Masum (2014-09-18)
This paper deals with Series Active Filter (SAF) based damping methods for the LCL filters of three-phase, grid connected, low voltage, high power Voltage Source Inverters (VSIs). The inherent resonance problem of LCL filters is damped via passive or active damping methods. Passive damping methods employing damping resistors create significant power losses reducing the overall system's efficiency for high power inverters. Active damping methods, on the other hand, are not applicable due to inverter's limite...
Series Active Filter Based Resonance Damping of High Power Three-phase, LCL Filtered, Grid Connected Voltage Source Inverters
Usluer, S. Nadir; Hava, Ahmet Masum (2014-06-04)
A series active filter (SAF) based method for the damping of resonant harmonics created by the LCL-filter of the grid connected PWM-VSI is proposed. Oscillations in multi-megawatt rated high power inverters with LCL-filters are damped with resistors which create undesired power losses typically up to 1% of the rated power of the system. The method stated in this paper overcomes the stability/oscillation problem while providing a solution to the resistive power loss. The proposed SAF compensated system perfo...
Performance Analysis, Filter Component Sizing, and Controller Structure Selection of Small Capacitor Diode Rectifier Front End Inverter Drives
Aban, V. Volkan; Hava, Ahmet Masum (2014-09-24)
In this study, the input filter design and dc-bus voltage control of ac motor drives utilizing low capacitance film capacitor are investigated. The dc-bus voltage instability problem arising due to the resonance between the dc-bus capacitor and circuit inductances is explained. A dimensioning algorithm of dc-bus filter components for stable operation is given. The simulation results of the low capacitance motor drives with and without dc-link inductor are provided to observe the stability of the dc-bus at d...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Ozkaya, O. S. Senturk, and A. M. Hava, “Performance enhancement and comparison of discrete time current regulators for parallel active filters,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40633.