Series Active Filter Based Resonance Damping of High Power Three-phase, LCL Filtered, Grid Connected Voltage Source Inverters

Usluer, S. Nadir
Hava, Ahmet Masum
A series active filter (SAF) based method for the damping of resonant harmonics created by the LCL-filter of the grid connected PWM-VSI is proposed. Oscillations in multi-megawatt rated high power inverters with LCL-filters are damped with resistors which create undesired power losses typically up to 1% of the rated power of the system. The method stated in this paper overcomes the stability/oscillation problem while providing a solution to the resistive power loss. The proposed SAF compensated system performs satisfactorily under rated load conditions and the transition from passive damping to SAF is flawless. Adaptability of the proposed method to dynamic loads is also advantageous as opposed to passive damping methods. Simplified circuit diagrams and schematics are provided through the paper. Mathematical model of the passively damped filter is compared and contrasted with the SAF compensated system. The validity of the proposed method is proven via simulations.


Investigation on Series Active Filter Compensated High Power Grid-Connected Voltage Source Inverters with LCL Filter
Usluer, S. Nadir; Hava, Ahmet Masum (2014-09-18)
This paper deals with Series Active Filter (SAF) based damping methods for the LCL filters of three-phase, grid connected, low voltage, high power Voltage Source Inverters (VSIs). The inherent resonance problem of LCL filters is damped via passive or active damping methods. Passive damping methods employing damping resistors create significant power losses reducing the overall system's efficiency for high power inverters. Active damping methods, on the other hand, are not applicable due to inverter's limite...
Control Strategies for Grid Connected PWM-VSI Systems
Kantar, Emre; Usluer, S. Nadir; Hava, Ahmet Masum (2013-11-30)
This paper evaluates the current control methods for three-phase voltage-source-inverters (VSIs) connected to the grid via LCL-filters. Current feedback methods from both line and converter sides are compared and theoretical analysis is stated. The analysis is based on the existence of a critical resonant frequency dividing the controlling frequency interval into two regions; namely low and high resonant frequency regions. The feedback types and damping methods are evaluated for both low and high resonant f...
Design of Selective Linear Phase Cross-Coupled Dielectric Resonator Filters
Ozturk, Onur Ozan; Oruc, Sacid; Alicioglu, Bulent; Yıldırım, Nevzat (2018-11-02)
In this paper, a highly selective linear phase filter is designed and implemented in cross-coupled form using dielectric resonators in Ku band to be used as a channel filter in IMUX of a satellite receiver. Extreme delay flatness is required: 1.5 nS delay ripple over 60 % of the passband and 12 nS near the band edges. The initial design is carried out as 10 resonator symmetric cross-coupled filter with all ideal inverter couplings realizing two finite transmission zeros (FTZ) satisfying also the delay flatn...
LCL-Filter Design for Low-Voltage High-Power Grid-Tied Voltage-Source Converter Considering Various Damping Methods
Kantar, Emre; Hava, Ahmet Masum (2016-06-30)
The limited switching frequency, size and weight concerns, and the stringent limits for the injected grid current harmonics challenge the implementation of LCL grid filters for low-voltage multi-megawatt (multi-MW) renewable energy converters. Traditional design procedures of such filters employed in low power and high switching frequency converters may not hold for a multi-MW filter interfacing a low-voltage converter switching at low frequency to the electric grid. This paper proposes an LCL-filter design...
Performance comparison of passive series R and shunt R-C damped LCL filter for grid-connected inverters
Temiz, Hakan; Demirok, Erhan; Keysan, Ozan; Turkay, Ali; Cetinkaya, Burak (2019-07-01)
LCL filters are widely used in distributed power-generation systems to attenuate high-frequency harmonics caused by pulse-width modulation switching of grid-connected inverters. A resonance occurs due to the series-connected reactive components. In order to damp resonance effects, active and passive damping methods are used. Lower switching frequencies are typically preferred to decrease switching power losses with high-power applications. Thus, control bandwidth of the system is limited and implementation ...
Citation Formats
S. N. Usluer and A. M. Hava, “Series Active Filter Based Resonance Damping of High Power Three-phase, LCL Filtered, Grid Connected Voltage Source Inverters,” 2014, Accessed: 00, 2020. [Online]. Available: