Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Decision and feature fusion over the fractal inference network using camera and range sensors
Date
1998-11-03
Author
Erkmen, İsmet
Erkmen, Aydan Müşerref
Ucar, E
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
The objective of the ongoing work is to fuse information from uncertain environmental data taken by cameras, short range sensors including infrared and ultrasound sensors for strategic target recognition and task specific action in Mobile Robot applications. Our present goal in this paper is to demonstrate target recognition for service robot in a simple office environment. It is proposed to fuse all sensory signals obtained from multiple sensors over a fully layer-connected sensor network system that provides an equal opportunity competitive environment for sensory data where those bearing less uncertainty, less complexity and less inconsistencies with the overall goal survive, while others fade out. In our work, this task is achieved as a decision fusion using the Fractal Inference Network (FIN), where information patterns or units- modelled as textured belief functions bearing a fractal dimension due to uncertainty - propagate while being processed at the nodes of the network. Each local process of a node generates a multiresolutional feature fusion. In this model, the environment is observed by multisensors of different type, different resolution and different spatial location without a prescheduled sensing scenario in data gathering. Node activation and flow control of information over the FIN is performed by a neuro-controller, a concept that has been developed recently as an improvement over the classical Fractal Inference Network. In this paper, the mathematical closed form representation for decision fusion over the FIN is developed in a way suitable for analysis and is applied to a NOMAD mobile robot servicing an office environment.
Subject Keywords
Fractal Inference Network
,
Multiresolutional Sensor Fusion
,
Belief Functions
,
Evidential Logical Sensors
,
Textured Belief Networks
URI
https://hdl.handle.net/11511/40649
DOI
https://doi.org/10.1117/12.326992
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar