Monolayer Assembly of MultiSpiked Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy-Based Trace Detection of Dyes and Explosives

Ahmed, Waqqar
Demirtas, Ozge
Öztürk, İbrahim Murat
Bek, Alpan
For sensitive and reproducible surface-enhanced Raman scattering (SERS)-based trace detection, a SERS platform with high concentration of homogeneously distributed hotspots is needed. Herein, we report a facile monolayer assembly of multispiked gold nanoparticles (MSGNPs) of various sizes over a large area. The assembly was achieved simply by tuning the concentration of MSGNPs in a suspension and subsequently drying it on a substrate under ambient conditions. A monolayer assembly for MSGNP sizes ranging from 150 to 640 nm has been demonstrated. The MSGNP assembly showed excellent sensitivity and uniformity of SERS-based trace detection, owing to the presence of high concentration of uniformly distributed interparticle and intraparticle hotspots. In particular, detection of 10 fM of a toxic dye, crystal violet, has been demonstrated. Moreover, ammonium nitrate, which is a commonly used material for homemade explosives, was detected at 1 mu M level. The MSGNP-based SERS platforms have great potential for applications in sensitive and reliable toxin and explosive detection.


Fabrication of flexible, cost-effective, and scalable silver substrates for efficient surface enhanced Raman spectroscopy based trace detection
Khan, Ghazanfar Ali; Demirtas, O. Ozge; Demir, Ahmet Kemal; Aytekin, Özlem; Bek, Alpan; Bhatti, Arshad Saleem; Ahmed, Waqqar (2021-06-01)
The fabrication and optimization of cost-effective, eco-friendly, uniform and flexible SERS platforms by facile synthesis routes has recently attracted great attention for trace detection of various analytes. Herein, we report the fabrication of interconnected Ag nanostructures on the unmodified filter paper-based flexible substrates by a facile recipe, which involves evaporation of Ag precursor solution on the filter paper followed by its reduction with a strong reducing agent, NaBH4. The fabrication proce...
Biosensors Based on Nano-Gold/Zeolite-Modified Ion Selective Field-Effect Transistors for Creatinine Detection
Kasap, Berna Ozansoy; Marchenko, Svitlana V.; Soldatkin, Oleksandr O.; Dzyadevych, Sergei V.; Akata Kurç, Burcu (2017-03-02)
The combination of advantages of using zeolites and gold nanoparticles were aimed to be used for the first time to improve the characteristic properties of ion selective field-effect transistor (ISFET)-based creatinine biosensors. The biosensors with covalently cross-linked creatinine deiminase using glutaraldehyde (GA) were used as a control group, and the effect of different types of zeolites on biosensor responses was investigated in detail by using silicalite, zeolite beta (BEA), nano-sized zeolite beta...
Demir, Özlem Tuğfe; Tuncer, Temel Engin (2016-03-25)
In this paper, simultaneous wireless information and power transfer (SWIPT) is considered for multi-group multicasting relay networks where there is no direct link between the source and destination nodes. Each source transmits its own multicast stream to a group of users with the help of single antenna relays which use amplify-and-forward relay protocol. Each user has energy harvesting capability. A part of the received signal is used for information decoding while the rest is used for energy harvesting. T...
Thermoluminescence properties of ZnO nanoparticles in the temperature range 10-300 K
IŞIK, MEHMET; YILDIRIM, TACETTİN; Hasanlı, Nızamı (2016-04-01)
Low-temperature thermoluminescence (TL) properties of ZnO nanoparticles grown by sol-gel method were investigated in the 10-300 K temperature range. TL glow curve obtained at 0.2 K/s constant heating rate exhibited one broad peak around 83 K. The observed peak was analyzed using curve fitting method to determine the activation energies of trapping center(s) responsible for glow curve. Analyses resulted in the presence of three peaks at 55, 85 and 118 K temperatures with activation energies of 12, 30 and 45 ...
Monovalent cations and their influence on activated sludge floc chemistry, structure, and physical characteristics
Kara, F.; Gurakan, G. C.; Sanin, Faika Dilek (Wiley, 2008-06-01)
Multivalent cations have been known to be important components of activated sludge floc structure due to their bridging ability of the negatively charged sites on the biopolymer network. Recently in batch systems it was found that excess concentration of monovalent cations led to the deterioration in settleability, dewaterability of sludges and effluent quality of the system. In this study, effect of influent monovalent cations (potassium and sodium) on activated sludge floc structure was investigated in se...
Citation Formats
W. Ahmed, O. Demirtas, İ. M. Öztürk, and A. Bek, “Monolayer Assembly of MultiSpiked Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy-Based Trace Detection of Dyes and Explosives,” ACS APPLIED NANO MATERIALS, pp. 6766–6773, 2020, Accessed: 00, 2020. [Online]. Available: