Temperature-tuned band gap energy and oscillator parameters of Tl2InGaSe4 semiconducting layered single crystals

2009-03-01
The optical properties of Tl2InGaSe4 layered single crystals have been studied through the transmission and reflection measurements in the wavelength range of 500-1100 nm. The analysis of room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.86 and 2.05 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed that the rate of change of the indirect band gap with temperature is gamma = -4.4 x 10(-4) eV/K. The absolute zero value of the band gap energy was obtained as E-gi(0) = 1.95 eV. The dispersion of the refractive index is discussed in terms of the single oscillator model. The refractive index dispersion parameters: oscillator wavelength and strength were found to be 2.53 x 10(-7) m and 9.64 x 10(13) m(-2), respectively. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CRYSTAL RESEARCH AND TECHNOLOGY

Suggestions

Dispersive optical constants and temperature tuned band gap energy of Tl2InGaS4 layered crystals
Goksen, K.; Hasanlı, Nızamı; Ozkan, H. (IOP Publishing, 2007-06-27)
The optical properties of Tl2InGaS4 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 400-1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.35 and 2.54 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed that the rate of change of the indirect band gap with temperature is gamma =...
Composition-tuned refractive index and oscillator parameters in TlGaxIn1-xS2 layered mixed crystals (0 <= x <= 1)
Hasanlı, Nızamı (Elsevier BV, 2010-09-01)
The optical properties of TlGaxIn1-xS2 mixed crystals have been studied through transmission and reflection measurements in the wavelength range 400-1100 nm. These measurements allowed determination of the spectral dependence of the refractive index for all compositions of the mixed crystals studied. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The compositional dependences of the refractive index dispersion parameters (oscillator e...
Refractive index, oscillator parameters and temperature-tuned energy band gap of Tl4In3GaS8-layered single crystals
Goksen, K.; Hasanlı, Nızamı (Elsevier BV, 2008-10-01)
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52eV, respectively. The rate of change of the indirect band gap with temperature dE(gi)/dT = -6.0 x 10(-4) eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero valu...
Temperature and excitation intensity tuned photoluminescence in Tl4GaIn3S8 layered single crystals
Golksen, K.; Hasanlı, Nızamı (Wiley, 2008-05-01)
Photoluminescence spectra of Tl4GaIn3S8 layered crystals grown by Bridgman method have been studied in the wavelength region of 500-780 nm and in the temperature range of 26-130 K with extrinsic excitation source (lambda(exc) = 532 nm), and at T = 26 K with intrinsic excitation source (lambda(exc) = 406 nm). Three emission bands A, B and C centered at 514 nm (2.41 eV), 588 nm (2.11 eV) and 686 nm (1.81 eV), respectively, were observed for extrinsic excitation process. Variations in emission spectra have bee...
Infrared photoluminescence from TlGaS2 layered single crystals
Yuksek, NS; Hasanlı, Nızamı; Aydinli, A; Ozkan, H; Acikgoz, M (Wiley, 2004-09-01)
Photolimuniscence (PL) spectra of TlGaS2 layered crystals were studied in the wavelength region 500-1400 nm and in the temperature range 15-115 K, We observed three broad bands centered at 568 nm (A-band), 718 nm (B-band) and 1102 nm (C-band) in the PL spectrum. The observed bands have half-widths of 0.221, 0.258 and 0.067 eV for A-, B-, and C-bands, respectively. The increase of the emission band half-width, the blue shift of the emission band peak energy and the quenching of the PL with increasing tempera...
Citation Formats
N. Hasanlı, “Temperature-tuned band gap energy and oscillator parameters of Tl2InGaSe4 semiconducting layered single crystals,” CRYSTAL RESEARCH AND TECHNOLOGY, pp. 322–326, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40728.