Kriging regression of PIV data using a local error estimate

2014-01-01
de Baar, Jouke H. S.
Perçin, Mustafa
Dwight, Richard P.
van Oudheusden, Bas W.
Bijl, Hester
The objective of the method described in this work is to provide an improved reconstruction of an original flow field from experimental velocity data obtained with particle image velocimetry (PIV) technique, by incorporating the local accuracy of the PIV data. The postprocessing method we propose is Kriging regression using a local error estimate (Kriging LE). In Kriging LE, each velocity vector must be accompanied by an estimated measurement uncertainty. The performance of Kriging LE is first tested on synthetically generated PIV images of a two-dimensional flow of four counter-rotating vortices with various seeding and illumination conditions. Kriging LE is found to increase the accuracy of interpolation to a finer grid dramatically at severe reflection and low seeding conditions. We subsequently apply Kriging LE for spatial regression of stereo-PIV data to reconstruct the three-dimensional wake of a flapping-wing micro air vehicle. By qualitatively comparing the large-scale vortical structures, we show that Kriging LE performs better than cubic spline interpolation. By quantitatively comparing the interpolated vorticity to unused measurement data at intermediate planes, we show that Kriging LE outperforms conventional Kriging as well as cubic spline interpolation.
EXPERIMENTS IN FLUIDS

Suggestions

An Algorithm for the forward step of adaptive regression slines via mapping approach
Kartal Koç, Elçin; Batmaz, İnci; İyigün, Cem; Department of Statistics (2012)
In high dimensional data modeling, Multivariate Adaptive Regression Splines (MARS) is a well-known nonparametric regression technique to approximate the nonlinear relationship between a response variable and the predictors with the help of splines. MARS uses piecewise linear basis functions which are separated from each other with breaking points (knots) for function estimation. The model estimating function is generated in two stepwise procedures: forward selection and backward elimination. In the first st...
Monte Carlo analysis of the effects of the material and shape uncertainties on radar cross section by the finite difference time domain method
Kazar, Ali Kemal; Kuzuoğlu, Mustafa; Özgün, Özlem; Department of Electrical and Electronics Engineering (2013)
The aim of this research is to analyze the variations in Radar Cross Section (RCS) values of dielectric and conducting objects due to material and shape uncertainties by employing the Finite Difference Time Domain Method and the Monte Carlo approach in electromagnetic scattering problems. MATLAB codes are developed and validated to solve the electromagnetic scattering problem involving two and three dimensional arbitrarily-shaped objects. Basic principles of FDTD and its implementation in MATLAB are describ...
Dynamical modelling of the flow over a flapping wing using proper orthogonal decomposition and system identification techniques
DURMAZ, Oğuz; KARACA, H Deniz; ÖZEN, G Deniz; KASNAKOĞLU, COŞKU; Kurtuluş, Dilek Funda (2013-04-01)
A systematic approach for the dynamical modelling of the unsteady flow over a flapping wing is developed, which is based on instantaneous velocity field data of the flow collected using particle image velocimetry (PIV) and computational fluid dynamics (CFD) simulations. The location and orientation of the airfoil is obtained by image processing and the airfoil is filled with proper velocity data. Proper orthogonal decomposition (POD) is applied to these post-processed images to compute POD modes and time co...
An fMRI segmentation method under markov random fields for brain decoding
Aksan, Emre; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2015)
In this study, a specially tailored segmentation method for partitioning the fMRI data into a set of "homogenous" regions with respect to a predefined cost function is proposed. The proposed method, referred as f-MRF, employs univariate and multivariate fMRI data analysis techniques under Markov Random Fields to estimate the segments by resolving a mixture density. The univariate approach helps identifying activation pattern of a voxel independently from other voxels. In order to capture local interactions ...
Extraction of 3D transform and scale invariant patches from range scans
Akagunduz, Erdern; Ulusoy, İlkay (2007-06-22)
An algorithm is proposed to extract transformation and scale invariant 3D fundamental elements from the surface structure of 3D range scan data. The surface is described by mean and Gaussian curvature values at every data point at various scales and a scale-space search is performed in order to extract the fundamental structures and to estimate the location and the scale of each fundamental structure. The extracted fundamental structures can later be used as nodes in a topological graph where the links betw...
Citation Formats
J. H. S. de Baar, M. Perçin, R. P. Dwight, B. W. van Oudheusden, and H. Bijl, “Kriging regression of PIV data using a local error estimate,” EXPERIMENTS IN FLUIDS, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40737.