Modeling and simulations of a micro solar power system

Pehlivanturk, Can
Ozkan, Onur
Baker, Derek Keıth
In this paper, the mathematical modeling and simulations of a concentrating solar power system located at the Middle East Technical University Northern Cyprus Campus are presented. The system consists of parabolic trough collectors (PTCs), a propane boiler, an organic Rankine cycle (ORC), and a wet cooling tower. Presently, the PTC field is severely undersized with respect to the ORC making the system impossible to operate without burning significant propane. Expanding the solar field could result in better system performance. Hourly, daily and seasonal variations in the performance of this system are simulated using hourly meteorological data for Larnaca, Cyprus, over an entire year. Because the ORC is driven using a relatively low-temperature heat source rather than PTCs, the usage of nonconcentrating evacuated tube collectors that collect both beam and diffuse radiation is explored. The performance of east-west and north-south-tracking axis PTCs and the entire inventory of nonconcentrating evacuated tube collectors that were rated by the Solar Rating and Certification Corporation are compared in terms of annual performance metrics. Based on the simulations, several nonconcentrating evacuated tube collectors are identified with better thermal performance than PTCs, and the feasibility of using these collectors should be explored further. Copyright (C) 2013 John Wiley & Sons, Ltd.


Statistical analysis of solar radiation data
Yilmaz, E.; Cancino, B.; Parra, W. R. (Informa UK Limited, 2007-01-01)
Solar radiation is the most important parameter in the design and study of solar energy conversion devices. The present work is based on statistical analysis of solar radiation data for the city of Valparaiso in the coast region of Chile. Experimental data were obtained from the Santa Maria University in Valparaiso over a five-year period measured by the actinograph and the pyranometer. The error between the actinography values in relation to the pyranometer ones was determined. The most frequent error perc...
Numerical analysis ofdopant-freeasymmetric silicon heterostructure solar cell withSiO(2)as passivation layer
Mehmood, Haris; Nasser, Hisham; Tauqeer, Tauseef; Turan, Raşit (Wiley, 2020-08-01)
Conventional silicon heterojunction solar cells employ defects-prone a-Si:H layers for junction formation and passivation purposes. Substituting these layers with hole-selective MoO(x)and electron-selective TiO(x)can reduce parasitic absorption and energy band offsets issues associated with doped silicon films. In this work, dopant-free asymmetric heterostructure Si solar cells are studied with and without SiO(2)passivation layer, and their performance has been compared. The inclusion of ultrathin SiO(2)ins...
Operation of a multistory solar building under adverse climatic conditions
Taşdemiroğlu, E (Elsevier BV, 1990-1)
Architectural, urban, thermal, economic and industrial aspects of a multistory solar building have been investigated when operating under adverse climatic conditions in Turkey. Active, passive and hybrid space heating systems which could be adapted to the building structure have been studied comparatively. The magnitudes of the design elements and the technical-economic results of the selected hybrid system have been determined. A domestic hot water installation has been also described
Evaluation of hybridsolar-wind-hydrogenenergy system based on methanol electrolyzer
Budak, Yagmur; DEVRİM, YILSER (Wiley, 2020-10-01)
In this study, it is aimed to meet the annual electricity and heating needs of a house without interruption with the photovoltaic panel, wind turbine, methanol electrolyzer, and high temperature proton exchange membrane fuel cell system. The system results show that the use of the 2 WT with 18 PV was enough to provide the need of the methanol electrolyzer, which provides requirements of the high temperature proton exchange membrane fuel cell. The produced heat by the fuel cell was used to meet the heat requ...
An investigation of optimum PV and wind energy system capacities for alternate short and long-term energy storage sizing methodologies
Al-Ghussain, Loiy; Taylan, Onur; Baker, Derek Keıth (Wiley, 2019-01-01)
The goal of this study is to find the optimal sizes of renewable energy systems (RES) based on photovoltaic (PV) and/or wind systems for three energy storage system (ESS) scenarios in a micro-grid; (1) with pumped hydro storage (PHS) as a long-term ESS, (2) with batteries as a short-term ESS, and (3) without ESS. The PV and wind sizes are optimally determined to accomplish the maximum annual RES fraction (F-RES) with electricity cost lower than or equal to the utility tariff. Furthermore, the effect of the ...
Citation Formats
C. Pehlivanturk, O. Ozkan, and D. K. Baker, “Modeling and simulations of a micro solar power system,” INTERNATIONAL JOURNAL OF ENERGY RESEARCH, pp. 1129–1144, 2014, Accessed: 00, 2020. [Online]. Available: