Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Alteration of enzyme activities and kinetic properties of GST and NQO1 with naturally occurring phenolic compounds
Date
2015-01-01
Author
KARAKURT, SERDAR
Sever, Melike
Celebioglu, Hasan Ufuk
Adalı, Orhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
Objective: Glutathione S-transferase (GST) and NAD(P)H:quinine oxidoreductase 1 (NQO1) are the enzymes important in cytoprotection and bioactivation of chemicals. This study has addressed effects of polyphenolic compounds; ellagic acid, quercetin, naringenin, resveratrol, rutin and hesperidin on rabbit liver GST and NQO1 enzyme activities.
Subject Keywords
Clinical Biochemistry
,
Biochemistry
,
Molecular Biology
,
Biochemistry, medical
URI
https://hdl.handle.net/11511/40843
Journal
TURKISH JOURNAL OF BIOCHEMISTRY-TURK BIYOKIMYA DERGISI
DOI
https://doi.org/10.1515/tjb-2015-0010
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Purification of glutathione S-transferases and genetic characterization of Zeta isozyme from Pinus brutia, Ten
Öztetik, Elif; İşcan, Mesude; Department of Biochemistry (2005)
Glutathione S-transferases (GST, EC2.5.1.18) are a family of multifunctional, dimeric enzymes that catalyse the nucleophilic attack of the tripeptide glutathione (?-L-glutamyl-L-cysteinyl-L-glycine) on lipophilic compounds with electrophilic centres. The primary function of GSTs is generally considered to be the detoxification of both endogenous and xenobiotic compounds. Cytosolic GSTs have been grouped into eleven distinct classes as: (A); Alpha, (M); Mu, (P); Pi, (S); Sigma, (T); Theta, (Z); Zeta, (F); Ph...
Investigation for natural extract inhibitors of bovine lens aldose reductase responsible for the formation of diabetis dependent cataract
Onay, Melih; Çoruh, Nursen; Department of Biochemistry (2008)
In the polyol pathway, Aldose reductase (AR) is an important enzyme in reduction of aldehydes and aldosugars to their suitable alcohols. AR, using NADPH as a coenzyme, has a molecular weight of 37 000 dalton. AR in its activated form, known to increase the sorbitol accumulation in lens, is responsible for the cataract formation in diabetis diseases. Therefore, the inhibition of aldose reductase is important to prevent the incedence of cataract formation in diabetus mellitus. In the treatment of diabetis dep...
Isolation and immunological characterization of theta class glutathione-s-transferase gstt2-2 from bovine liver
İşgör, Sultan Belgin; Çoruh, Nursen; Department of Biochemistry (2004)
The glutathione-S-transferases (GSTs) (EC.2.5.1.18) are enzymes that participate in cellular detoxification of endogenous as well as foreign electrophilic compounds, function in the cellular detoxification systems and are evolved to protect cells against reactive oxygen metabolites by conjugating the reactive molecules to the nucleophile scavenging tripeptide glutathione (GSH, ?-glu-cys-gly). The GSTs are found in all eukaryotes and prokaryotic systems, in the cytoplasm, on the microsomes, and in the mitoch...
AMINO-ACID SUBSTITUTIONS WITHIN THE ANALOGOUS NUCLEOTIDE-BINDING LOOP (P-LOOP) OF AMINOGLYCOSIDE 3'-PHOSPHOTRANSFERASE-II
KOCABIVIK, S; PERLIN, MH (Elsevier BV, 1994-01-01)
1. Oligonucleotide-directed mutagenesis of APH(3')-II was used to investigate the functions of key amino acids in the P-loop analogous motif of the enzyme. 2. The mutations of Gly205 --> GIu, Gly210 --> Ala and Arg211 --> Pro considerably reduced the resistance of the resulting strains to KM and to related drugs, e.g. G418. 3. Similarly, enzyme activity in the crude extracts of these mutants was substantially reduced as well as the enzyme's affinity for Mg2+ ATP. 4. Alternatively substitutions at a highly c...
POSSIBLE INVOLVEMENT OF MANGANESE IN THE CATALYTIC MECHANISM OF BOVINE LIVER ARGINASE
TURKOGLU, S; OZER, I (Elsevier BV, 1992-06-01)
1. Bovine liver arginase followed Michaelis-Menten kinetics in the pH range of 4.5-9.0. The variation of upsilon(i) pH implied that a basic group (pK(alpha) 8.7) functions at the catalytic site.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. KARAKURT, M. Sever, H. U. Celebioglu, and O. Adalı, “Alteration of enzyme activities and kinetic properties of GST and NQO1 with naturally occurring phenolic compounds,”
TURKISH JOURNAL OF BIOCHEMISTRY-TURK BIYOKIMYA DERGISI
, pp. 251–257, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40843.