Development of a design verification methodology including strength and fatigue life prediction for agricultural tractors

2012-05-01
During the operations of an agricultural tractor, front axle and front axle support encounter the worst load conditions of the whole tractor. If the design of these components is not verified by systematic engineering approach, the operators of the tractor may face with sudden failures. This paper aims to develop a verification method, which involves testing an agricultural tractor on a special test track and agricultural field and together with the computer aided engineering analysis, in order to prevent such failures in the lifetime of the agricultural tractor. For this purpose, a strain gage data acquisition system has been designed to measure the strain values on the component in order to determine maximum principle stresses for the calculation of overload safety on the agricultural field and stress data for the prediction of fatigue life on a radial washboard test track. The cycle number of these stress data for the fatigue analysis has been established by rainflow cycle counting method. Total fatigue damage for the front axle support has been calculated considering damage accumulation hypothesis defined by Miner.
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Suggestions

Acquisition of field data for agricultural tractor
Koyuncu, Atayıl; Adalı, Orhan; Department of Mechanical Engineering (2006)
During the operations of an agricultural tractor, front axle and front axle support encounter the worst load conditions of the whole tractor. If the design of these components is not verified by systematic engineering approach, the customers could face with sudden failures. Erkunt Agricultural Machinery Company, which is located in Ankara, has newly designed and manufactured the front axle support of its agricultural tractors. In this study, the design of 2WD (Wheel Drive) Erkunt Bereket Agricultural Tracto...
Thermal history and microstructure during friction stir welding of Al-Mg alloy
Sheikh-Ahmad, J. Y.; Ozturk, F.; Jarrar, F.; Evis, Zafer (Springer Science and Business Media LLC, 2016-09-01)
In this study, a commercial aluminum-magnesium alloy was friction stir welded (FSW) at a constant rotational speed of 1016 rpm and different welding speeds from 50 to 400 mm/min. Temporal thermal histories of the process were recorded at different locations from the weld line and transformed to spatial temperature distribution near the weld line. Tensile and microhardness measurements were also performed and the microstructure in the weld zone was investigated. Results of this revealed that an increase in w...
Validation of MISES Two-Dimensional Boundary Layer Code for High-Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (ASME International, 2009-07-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed-one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a bounda...
Structural crashworthiness analysis of a ladder frame chassis subjected to full frontal and pole side impacts
Dagdeviren, Semih; Yavuz, Mecit; Kocabas, M. Ozan; Unsal, Eren; Esat, Volkan (Informa UK Limited, 2016-01-01)
Automobile chassis is a major element of structural crashworthiness in road motor vehicles. Various chassis geometry and topology research studies have been conducted to improve crash energy absorption characteristics of the chassis. In side impacts, crashworthiness of an automobile body depends not only on the chassis geometry and topology, but also on the design and reliability of other structural members such as B-pillar and side panels. This study aims to contribute to the investigations on the effects ...
High-performance parallel hexapod-robotic light abrasive grinding using real-time tool deflection compensation and constant resultant force control
Latifinavid, Masoud; Donder, Abdulhamit; Konukseven, Erhan İlhan (Springer Science and Business Media LLC, 2018-06-01)
In robotic grinding, significant tool deflection occurs due to the lower stiffness of the manipulator and tool, compared with operation by universal grinding machines. Tool deflection during robotic grinding operation causes geometrical errors in the workpiece cross section. Also, it makes difficult to control the grinding cutting depth. In this study, a method is proposed for calculation of the tool deflection in normal and tangential directions based on grinding force feedback in these directions. Based o...
Citation Formats
A. Koyuncu, M. İ. Gökler, and R. T. Balkan, “Development of a design verification methodology including strength and fatigue life prediction for agricultural tractors,” INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, pp. 777–785, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40901.