Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
OBJECT CLASSIFICATION IN INFRARED IMAGES USING DEEP REPRESENTATIONS
Date
2016-09-29
Author
Gündoğdu, Erhan
Koç, AYKUT
Alatan, Abdullah Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
In this study, we address the problem of infrared (IR) object classification that divides the object appearance space hierarchically with a binary decision tree structure. Binary decisions are made by using the special features of the object appearances. These features are extracted using a fully connected deep neural network learnt by training samples. At each node of the tree, we train individual deep CNNs such that each node specializes in its corresponding subspace. The proposed classification algorithm is evaluated in our generated dataset, which consists of IR targets collected from different video records obtained from different IR sensors (both midwave and longwave) and taken from real world field. The generated dataset consists of four different class labels as ship/boat, tank, plane and helicopter containing a total of 16K samples. Using the proposed tree-based classifier, we observe a favourable performance increase in our dataset against a single deep CNN classifier.
Subject Keywords
Infrared
,
Classification
,
Thermal targets
,
Thermal dataset generation
,
Tree-based classification
URI
https://hdl.handle.net/11511/40905
DOI
https://doi.org/10.1109/icip.2016.7532521
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar