Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
OBJECT RECOGNITION AND LOCALIZATION WITH ULTRASONIC-SCANNING
Date
1994-04-14
Author
KIRAGI, H
Ersak, Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
261
views
0
downloads
Cite This
In this paper an object recognition and localization system based on ultrasonic range imaging to be used in optically opaque environments is introduced. The system is especially designed for robotics applications. The ultrasonic image is acquired by scanning ultrasonic transducers in two dimensions above the area where objects are located. The features that are used for recognition and localization processes are extracted from the outermost boundaries of the objects present in the input scene. Experimental results concerning the applications are presented.
Subject Keywords
Object recognition
,
Optical imaging
,
Ultrasonic imaging
,
Acoustic sensors
,
Acoustic imaging
,
Sensor arrays
,
Robot sensing systems
,
Biomedical optical imaging
,
Optical transmitters
,
Pulse measurements
URI
https://hdl.handle.net/11511/62590
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
3D object recognition from range images
İzciler, Fatih; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2012)
Recognizing generic objects by single or multi view range images is a contemporary popular problem in 3D object recognition area with developing technology of scanning devices such as laser range scanners. This problem is vital to current and future vision systems performing shape based matching and classification of the objects in an arbitrary scene. Despite improvements on scanners, there are still imperfections on range scans such as holes or unconnected parts on images. This studyobjects at proposing an...
Robot end-effector based sensor integration for tracking moving parts
Konukseven, Erhan İlhan (2000-08-31)
This paper presents a cost-efficient end-effector based infrared proximity sensor integration system and the implementation of fuzzy-logic control algorithm.
Anlık Spektral Görüntüleme için Tasarım Eniyileme
Ayazgök, Suleyman; Öktem, Sevinç Figen (2019-08-22)
Snapshot spectral imaging enables to reconstructspectral images from a multiplexed single-shot measurement.Since an inversion is required to form the spectral images com-putationally, quantitative characterization of their performanceis essential to optimize the design. In this paper, we analyze theoptimal design of a snapshot spectral imaging technique. Thissnapshot multi-spectral imaging technique uses a diffractive lenscalled generalized photon sieve, and vari...
Image Reconstruction and Optimization Using a Terahertz Scanned Imaging System
Yildirim, Ihsan Ozan; ÖZKAN, VEDAT ALİ; Idikut, Firat; Takan, Taylan; ŞAHİN, ASAF BEHZAT; Altan, Hakan (2014-09-23)
Due to the limited number of array detection architectures in the millimeter wave to terahertz region of the electromagnetic spectrum, imaging schemes with scan architectures are typically employed. In these con fi gurations the interplay between the frequencies used to illuminate the scene and the optics used play an important role in the quality of the formed image. Using a multiplied Schottky-diode based terahertz transceiver operating at 340 GHz, in a stand-o ff detection scheme; the e ff ect of image q...
Electrical impedance tomography using the magnetic field generated by injected currents
Birgul, O; Ider, YZ (1996-11-03)
In 2D EIT imaging, the internal distribution of the injected currents generate a magnetic field in the imaging region which can be measured by magnetic resonance imaging techniques. This magnetic field is perpendicular to the imaging region on the imaging region and it can be used in reconstructing the conductivity distribution inside the imaging region. For this purpose, internal current distribution is found using the finite element method. The magnetic fields due to this current is found using Biot-Savar...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. KIRAGI and A. Ersak, “OBJECT RECOGNITION AND LOCALIZATION WITH ULTRASONIC-SCANNING,” 1994, p. 1185, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62590.