Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On soliton solutions of nonlinear sigma models of symmetric spaces
Download
index.pdf
Date
2001-10-30
Author
Karasu, Emine Ayşe
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
208
views
0
downloads
Cite This
The inverse scattering transform technique of Belinskii-Zakharov for the integration of nonlinear sigma model equations is reviewed. N-soliton solutions of the principal chiral field equations axe given. The explicit two-complex pole soliton solutions of vacuum and electro-vacuum Ernst equations are constructed.
Subject Keywords
FORMULATION
,
GRAVITY
URI
https://hdl.handle.net/11511/40914
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS A
DOI
https://doi.org/10.1142/s0217751x01005444
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Particle content of quadratic and f (R-mu nu sigma rho) theories in (A)dS
Tekin, Bayram (2016-05-17)
We perform a complete decoupling of the degrees of freedom of quadratic gravity and the generic f(R-mu nu sigma rho) theory about any one of their possible vacua, i.e. maximally symmetric solutions, and find the masses of the spin-2 and spin-0 modes in explicit forms.
On the Accuracy and Efficiency of Surface Formulations in Fast Analysis of Plasmonic Structures via MLFMA
Karaosmanoglu, B.; Yılmaz, Ayşen; Ergül, Özgür Salih (2016-08-11)
We consider the accuracy and efficiency of surface integral equations, when they are used to formulate electromagnetic problems involving plasmonic objects at optical frequencies. Investigations on the iterative solutions of scattering problems with the multilevel fast multipole algorithm show that the conventional formulations, especially the state-of-the-art integral equations, can significantly be inaccurate, in contrast to their performances for ordinary dielectrics. The varying performances of the form...
Simple transformation for converting CW-OSL curves to LM-OSL curves
Bulur, Enver (2000-01-01)
A simple mathematical transformation is introduced to convert from OSL decay curves obtained in the conventional way to those obtained using a linear modulation technique based on a linear increase of the stimulation light intensity during OSL measurement. The validity of the transformation was tested by the IR-stimulated luminescence curves from feldspars, recorded using both the conventional and the linear modulation techniques. The transformation was further applied to green-light-stimulated OSL from K a...
Free vibration characteristics of a 3d mixed formulation beam element with force-based consistent mass matrix
Soydas, Ozan; Sarıtaş, Afşin (2017-09-01)
In this analytical study, free vibration analyses of a 3d mixed formulation beam element are performed by adopting force-based consistent mass matrix that incorporates shear and rotary inertia effects. The force-based approach takes into account the actual distribution of mass of an element in the derivation of the mass matrix. Moreover, the force-based approach enables accurate determination of free vibration frequencies of members with varying geometry and material distribution without any need for specif...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. A. Karasu, “On soliton solutions of nonlinear sigma models of symmetric spaces,”
INTERNATIONAL JOURNAL OF MODERN PHYSICS A
, pp. 4409–4427, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40914.