Free vibration characteristics of a 3d mixed formulation beam element with force-based consistent mass matrix

2017-09-01
Soydas, Ozan
Sarıtaş, Afşin
In this analytical study, free vibration analyses of a 3d mixed formulation beam element are performed by adopting force-based consistent mass matrix that incorporates shear and rotary inertia effects. The force-based approach takes into account the actual distribution of mass of an element in the derivation of the mass matrix. Moreover, the force-based approach enables accurate determination of free vibration frequencies of members with varying geometry and material distribution without any need for specification of different displacement shape functions for each individual case. This phenomenon is justified by comparing free vibration frequencies of cantilever beams that have circular and rectangular cross-sections and various mass distribution configurations. Vibration frequencies of the mixed formulation element are compared with the frequencies obtained from closed-form solutions and finite element analyses. Fundamental frequency is computed with only one element per member span and higher order frequencies are determined with two or four elements with considerable accuracy by employing 3d mixed element and force-based consistent mass matrix.
JOURNAL OF VIBRATION AND CONTROL

Suggestions

Hybrid finite element for analysis of functionally graded beams
Sarıtaş, Afşin; Soydas, Ozan (2017-01-01)
A hybrid finite element model is presented, where stiffness and mass distributions over a beam with functionally graded material (FGM) are accurately modeled for both elastic and inelastic material responses. Von Mises and Drucker-Prager plasticity models are implemented for metallic and ceramic parts of FGM, respectively. Three-dimensional stress-strain relations are solved by a general closest point projection algorithm, and then condensed to the dimensions of the beam element. Numerical examples and veri...
Nonlinear vibration analysis of L-shaped beams and their use in vibration reduction
Ekici, Yiğitcan; Ciğeroğlu, Ender; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2022-9)
In this thesis, nonlinear vibration analysis of both fixed L-shaped beam and L-shaped beam attached to a single degree of freedom (SDOF) system is performed for several cases with different structural parameters to observe the effect of these parameters. Then these beams are proposed to reduce the vibration amplitudes of certain structures, and the nonlinear effects on the dynamic responses of these structures are investigated. The nonlinear dynamic model of the L-shaped beam is obtained by using Euler-Bern...
Active Vibration Suppression of a Smart Beam by Using an LQG Control Algorithm
Onat, Cem; Şahin, Melin; Yaman, Yavuz (2011-06-22)
The aim of this study was to design and experimentally apply a Linear Quadratic Gaussian (LQG) controller for the active vibration suppression of a smart beam. The smart beam was a cantilever aluminum beam with eight symmetrically located surface-bonded PZT (Lead-Zirconate-Titanate) patches which were utilized both as sensor or actuator depending on their location. A group of PZT patches closed to the root of the beam was used as actuators in the bimorph configuration and a single patch was nominated as a s...
Nonlinear resonances of axially functionally graded beams rotating with varying speed including Coriolis effects
Lotfan, Saeed; Anamagh, Mirmeysam Rafiei; Bediz, Bekir; Ciğeroğlu, Ender (2021-11-01)
The purpose of the current study was to develop an accurate model to investigate the nonlinear resonances in an axially functionally graded beam rotating with time-dependent speed. To this end, two important features including stiffening and Coriolis effects are modeled based on nonlinear strain relations. Equations governing the axial, chordwise, and flapwise deformations about the determined steady-state equilibrium position are obtained, and the rotating speed variation is considered as a periodic distur...
Nonlinear Vibration Analysis of Uniform and Functionally Graded Beams with Spectral Chebyshev Technique and Harmonic Balance Method
Dedekoy, Demir; Ciğeroğlu, Ender; Bediz, Bekir (2023-01-01)
In this paper, nonlinear forced vibrations of uniform and functionally graded Euler-Bernoulli beams with large deformation are studied. Spectral and temporal boundary value problems of beam vibrations do not always have closed-form analytical solutions. As a result, many approximate methods are used to obtain the solution by discretizing the spatial problem. Spectral Chebyshev technique (SCT) utilizes the Chebyshev polynomials for spatial discretization and applies Galerkin's method to obtain boundary condi...
Citation Formats
O. Soydas and A. Sarıtaş, “Free vibration characteristics of a 3d mixed formulation beam element with force-based consistent mass matrix,” JOURNAL OF VIBRATION AND CONTROL, pp. 2635–2655, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42333.