Free vibration characteristics of a 3d mixed formulation beam element with force-based consistent mass matrix

2017-09-01
Soydas, Ozan
Sarıtaş, Afşin
In this analytical study, free vibration analyses of a 3d mixed formulation beam element are performed by adopting force-based consistent mass matrix that incorporates shear and rotary inertia effects. The force-based approach takes into account the actual distribution of mass of an element in the derivation of the mass matrix. Moreover, the force-based approach enables accurate determination of free vibration frequencies of members with varying geometry and material distribution without any need for specification of different displacement shape functions for each individual case. This phenomenon is justified by comparing free vibration frequencies of cantilever beams that have circular and rectangular cross-sections and various mass distribution configurations. Vibration frequencies of the mixed formulation element are compared with the frequencies obtained from closed-form solutions and finite element analyses. Fundamental frequency is computed with only one element per member span and higher order frequencies are determined with two or four elements with considerable accuracy by employing 3d mixed element and force-based consistent mass matrix.
JOURNAL OF VIBRATION AND CONTROL

Suggestions

Hybrid finite element for analysis of functionally graded beams
Sarıtaş, Afşin; Soydas, Ozan (2017-01-01)
A hybrid finite element model is presented, where stiffness and mass distributions over a beam with functionally graded material (FGM) are accurately modeled for both elastic and inelastic material responses. Von Mises and Drucker-Prager plasticity models are implemented for metallic and ceramic parts of FGM, respectively. Three-dimensional stress-strain relations are solved by a general closest point projection algorithm, and then condensed to the dimensions of the beam element. Numerical examples and veri...
Active Vibration Suppression of a Smart Beam by Using an LQG Control Algorithm
Onat, Cem; Şahin, Melin; Yaman, Yavuz (2011-06-22)
The aim of this study was to design and experimentally apply a Linear Quadratic Gaussian (LQG) controller for the active vibration suppression of a smart beam. The smart beam was a cantilever aluminum beam with eight symmetrically located surface-bonded PZT (Lead-Zirconate-Titanate) patches which were utilized both as sensor or actuator depending on their location. A group of PZT patches closed to the root of the beam was used as actuators in the bimorph configuration and a single patch was nominated as a s...
Nonlinear 3D Modeling and Vibration Analysis of Horizontal Drum Type Washing Machines
Baykal, Cem; Ciğeroğlu, Ender; Yazıcıoğlu, Yiğit (2020-01-01)
In this study, a nonlinear 3-D mathematical model for horizontal drum type washing machines is developed considering rotating unbalance type excitation. Nonlinear differential equations of motion are converted into a set of nonlinear algebraic equations by using Harmonic Balance Method (HBM). The resulting nonlinear algebraic equations are solved by using Newton’s method with arc-length continuation. Several case studies are performed in order to observe the effects of orientation angles of springs and damp...
Excitonic effects on the nonlinear optical properties of small quantum dots
KARABULUT, İBRAHİM; Safak, H.; Tomak, Mehmet (IOP Publishing, 2008-08-07)
The excitonic effects on the nonlinear optical properties of small quantum dots with a semiparabolic confining potential are studied under the density matrix formalism. First, within the framework of the strong confinement approximation, we present the excitonic states and then calculate the excitonic effects on the nonlinear optical properties, such as second harmonic generation, third harmonic generation, nonlinear absorption coefficient and refractive index changes. We find the explicit analytical expres...
Nonlinear fiber modeling of steel-concrete partially composite beams with channel shear connectors
Öztürk, Alper; Baran, Eray; Department of Civil Engineering (2017)
The purpose of this study is to develop a nonlinear fiber-based finite element model of steel-concrete composite beams. The model was developed in OpenSees utilizing the available finite element formulations and the readily available uniaxial material constitutive relations. The model employed beam elements for the steel beam and the concrete slab, while zero-length connector elements were used for the steel-concrete interface. The channel shear connector response used in numerical models was based on the p...
Citation Formats
O. Soydas and A. Sarıtaş, “Free vibration characteristics of a 3d mixed formulation beam element with force-based consistent mass matrix,” JOURNAL OF VIBRATION AND CONTROL, pp. 2635–2655, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42333.