Modeling of inelastic behavior of curved members with a mixed formulation beam element

2009-04-01
The curved beam element in this paper is based on Hu-Washizu variational principle. The nonlinear response of the element arises from the integration of stress-strain relations over several control sections along the element length. The finite element approximation for the beam uses shape functions for stress resultants that satisfy equilibrium and discontinuous strains along the beam. No approximation for the beam displacement field is necessary in the formulation. The proposed element is free from membrane and shear locking. Examples verify the superior performance of the model under linear and nonlinear material conditions.
FINITE ELEMENTS IN ANALYSIS AND DESIGN

Suggestions

Non-destructive recognition of dielectric coated conducting objects by using WD type time-frequency transformation and PCA-based fusion
Sayan, Gönül (Wiley, 2013-07-01)
This article demonstrates the applications of a non-destructive electromagnetic target recognition method, called Wigner distribution-principal component analysis (WD-PCA) method, to dielectric coated conducting spheres. These spheres are chosen to be highly similar having the same overall size but slightly different permittivity and thickness values in coating layers. Four different classifiers are simulated by using the WD-PCA method for varying sizes of object libraries under different noise conditions. ...
Monte Carlo analysis of ridged waveguides with transformation media
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Wiley, 2013-07-01)
A computational model is presented for Monte Carlo simulation of waveguides with ridges, by combining the principles of transformation electromagnetics and the finite methods (such as finite element or finite difference methods). The principle idea is to place a transformation medium around the ridge structure, so that a single and easy-to-generate mesh can be used for each realization of the Monte Carlo simulation. Hence, this approach leads to less computational resources. The technique is validated by me...
Minimization of Monotonically Levelable Higher Order MRF Energies via Graph Cuts
Karci, Mehmet Haydar; Demirekler, Mübeccel (Institute of Electrical and Electronics Engineers (IEEE), 2010-11-01)
A feature of minimizing images of submodular binary Markov random field (MRF) energies is introduced. Using this novel feature, the collection of minimizing images of levels of higher order, monotonically levelable multilabel MRF energies is shown to constitute a monotone collection. This implies that these minimizing binary images can be combined to give minimizing images of the multilabel MRF energies. Thanks to the graph cuts framework, the mentioned class of binary MRF energies is known to be minimized ...
Transformation-based metamaterials to eliminate the staircasing error in the finite difference time domain method
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Wiley, 2012-07-01)
A coordinate transformation technique is introduced for the finite difference time domain method to alleviate the effects of errors introduced by the staircasing approximation of curved geometries that do not conform to a Cartesian grid. An anisotropic metamaterial region, which is adapted to the Cartesian grid and designed by the coordinate transformation technique, is constructed around the curved boundary of the object, and the region occupied between the curved boundary and the inner boundary of the ani...
A MAP-Based Approach for Hyperspectral Imagery Super-Resolution
IRMAK, Hasan; Akar, Gözde; Yuksel, Seniha Esen (Institute of Electrical and Electronics Engineers (IEEE), 2018-06-01)
In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov random field based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of f...
Citation Formats
A. Sarıtaş, “Modeling of inelastic behavior of curved members with a mixed formulation beam element,” FINITE ELEMENTS IN ANALYSIS AND DESIGN, pp. 357–368, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41051.