Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A passive cooling system proposal for multifunction and high power displays
Date
2013-02-07
Author
Tarı, İlker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.
Subject Keywords
Green photonics
,
Finned heat sinks
,
Natural convection
,
Multifunction displays
,
Electronics cooling
URI
https://hdl.handle.net/11511/41055
DOI
https://doi.org/10.1117/12.2005136
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A correlation for natural convection heat transfer from inclined plate-finned heat sinks
MEHRTASH, Mehdi; Tarı, İlker (2013-03-01)
Steady-state natural convection heat transfer from inclined plate-finned heat sinks to air is numerically investigated by using an experimentally validated model. The heat sinks with parallel arrangement of uniform rectangular cross section plate fins are inclined from the vertical in both forward and backward directions in order to investigate the effect of inclination on convection. Our previously validated numerical model for vertically oriented heat sinks is directly used without changing any model para...
Modeling of multidimensional heat transfer in a rectangular grooved heat pipe /
Odabaşı, Gülnihal; Dursunkaya, Zafer; Department of Mechanical Engineering (2014)
Heat pipes are generally preferred for electronics cooling application due to large heat transfer capacity in spite of small size. Micro heat pipes use small channels, whose dimension is on the order of micrometers, to generate necessary capillary action maintaining fluid flow for heat pipe operation. In the present study a flat micro heat pipe with rectangular cross section is analyzed numerically. A simplified axial fluid flow model is utilized to find liquid-vapor interface shape variation along the heat...
A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair
Solmus, Ismail; Rees, D. Andrew S.; Yamali, Cemil; Baker, Derek Keıth (2012-09-01)
In this study, the influence of the adsorbent bed dimensions, convective heat transfer coefficient between the cooling fluid and adsorbent bed and the thermal conductivity of the solid adsorbent material on the transient distributions of the solid and gas phase temperature difference, differences in the adsorbate concentration predicted by the instantaneous equilibrium and linear driving force (LDF) models, solid phase temperature, gas pressure and adsorbate concentration inside the adsorbent bed of a solid...
A numerical study on magneto-hydrodynamic mixed convection flow
Bozkaya, Canan (2014-01-01)
This paper, describes a study conducted to numerically investigate the two-dimensional, steady, laminar, magneto-hydrodynamic mixed convection flow and heat transfer characteristics in a lid-driven enclosure beneath an externally applied magnetic field. A solid square block is placed inside the cavity. The governing equations in the form of a stream function-vorticity-temperature formulation are solved numerically using the dual reciprocity boundary element method with constant elements. Treatment of nonlin...
A novel approach to condensation modeling at the fin top of a grooved heat pipe
Akdağ, Osman; Dursunkaya, Zafer; Department of Mechanical Engineering (2019)
Phase-change passive heat spreaders have the capability of carrying large amounts of heat from a heat source to a heat sink creating a small temperature difference. One common type of the passive heat spreaders is the heat pipes. The liquid flow inside a heat pipe is driven by the capillary pressure gradient created by a wick structure on the inner wall, which may be in the form of grooves, sintered grains or wire meshes. In the literature, grooved heat pipes are the most studied ones for modeling and exper...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Tarı, “A passive cooling system proposal for multifunction and high power displays,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41055.