Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair
Date
2012-09-01
Author
Solmus, Ismail
Rees, D. Andrew S.
Yamali, Cemil
Baker, Derek Keıth
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
263
views
0
downloads
Cite This
In this study, the influence of the adsorbent bed dimensions, convective heat transfer coefficient between the cooling fluid and adsorbent bed and the thermal conductivity of the solid adsorbent material on the transient distributions of the solid and gas phase temperature difference, differences in the adsorbate concentration predicted by the instantaneous equilibrium and linear driving force (LDF) models, solid phase temperature, gas pressure and adsorbate concentration inside the adsorbent bed of a solid sorption cooling system have been investigated numerically for a nearly isobaric adsorption process. Silica gel/water is selected as the working pair. A transient two-dimensional local thermal non-equilibrium model has been developed that takes into account both internal and external mass transfer resistances. The local volume averaging method has been used to derive the macro-scale governing conservation equations from the micro-scale equations. It has been found that generally, the effects of the parameters investigated on the transient distributions of the temperature difference between the phases, difference in adsorbate concentration between the instantaneous equilibrium and LDF models, and gas phase pressure gradients are negligible small.. The thickness of the adsorbent bed for the given adsorbent bed length and thermal conductivity of the solid adsorbent material have a large influence on the transient distributions of the solid phase temperature and adsorbate concentration. On the other hand, the transient temperature and adsorbate concentration distributions are only slightly affected by the variation of the adsorbent bed length and convective heat transfer for the conditions studied.
Subject Keywords
Adsorption
,
Cooling
,
Silica/Gel
,
LDF
,
LTNE
URI
https://hdl.handle.net/11511/36973
Journal
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
DOI
https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.036
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit
Solmus, Ismail; Rees, D. Andrew S.; Yamali, Cemil; Baker, Derek Keıth; KAFTANOĞLU, BİLGİN (2012-05-01)
In this study, the influence of several design parameters on the transient distributions of temperature, pressure and amount adsorbed in the radial direction of a cylindrical adsorbent bed of an adsorption cooling unit using silica gel/water have been investigated numerically. For this purpose, a transient one-dimensional local thermal non-equilibrium model that accounts for both internal and external mass transfer resistances has been developed using the local volume averaging method. For the conditions in...
A numerical study of single-phase convective heat transfer in microtubes for slip flow
Sun, Wei; Kakac, Sadik; Yazicioglu, Almila G. (2007-11-01)
The steady-state convective heat transfer for laminar, two-dimensional, incompressible rarefied gas flow in the thermal entrance region of a tube under constant wall temperature, constant wall heat flux, and linear variation of wall temperature boundary conditions are investigated by the finite-volume finite difference scheme with slip flow and temperature jump conditions. Viscous heating is also included, and the solutions are compared with theoretical results where viscous heating has been neglected. For ...
A CSCM approximation of steady MHD flow and heat transfer between parallel plates with hydrodynamic slip and convective boundary conditions
Tezer, Münevver; Türk, Önder (null; 2019-10-04)
The steady magnetohydrodynamic (MHD) flow together with its heat transfer between parallel plates is considered in which the electrically conducting fluid has temperature dependent properties such as viscosity, thermal and electrical conductivity. The fluid is driven by a constant pressure gradient, and a uniform external transverse magnetic field is applied perpendicular to the plates. The effects of viscous and Joule dissipations are considered in the energy equation, and the fluid is assumed to be slippi...
An experimental study on the performance of an adsorption cooling system and the numerical analysis of its adsorbent bed
Solmuş, İsmail; Yamalı, Cemil; Kaftanoğlu, Bilgin; Department of Mechanical Engineering (2011)
In this thesis, firstly, the equilibrium adsorption capacity of water on a natural zeolite at several zeolite temperatures and water vapor pressures has been experimentally determined for adsorption and desorption processes. Additionally, the modified Dubinin-Astakhov adsorption equilibrium model has been fitted to experimental data and separate correlations are obtained for adsorption and desorption processes as well as a single correlation to model both processes. Experimental results show that the maximu...
A CSCM Approximation of Steady MHD Flow and Heat Transfer Between Parallel Plates with Hydrodynamic Slip and Convective Boundary Conditions
Tezer, Münevver; Türk, Önder (2021-01-01)
© 2021, Springer Nature Switzerland AG.The steady magnetohydrodynamic (MHD) flow and heat transfer between parallel plates is considered in which the electrically conducting fluid has temperature dependent properties such as viscosity, thermal and electrical conductivity. The fluid is driven by a constant pressure gradient, and a uniform external transverse magnetic field is applied perpendicular to the plates. The effects of viscous and Joule dissipations are considered in the energy equation, and the flui...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Solmus, D. A. S. Rees, C. Yamali, and D. K. Baker, “A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair,”
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
, pp. 5275–5288, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36973.