Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance comparison of the 3D-printed and injection-molded PLA and its elastomer blend and fiber composites
Date
2019-04-01
Author
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
246
views
0
downloads
Cite This
The purpose of this study was to compare the performance of polylactide (PLA)-based materials shaped by the traditional injection molding technique versus three-dimensional (3D)-printing additive manufacturing. Comparisons were performed not only for neat PLA but also for its thermoplastic polyurethane elastomer (TPU) blend and for its E-glass fiber (GF)-reinforced composites. Performance comparison of the injection-molded and 3D-printed specimens was especially conducted to compare their mechanical properties (strength-modulus-toughness) by tensile, flexural, and fracture toughness tests. Other comparisons such as their macro-level appearances, fracture surface morphology, and thermal behavior were also performed by photographic images, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. It can be concluded that the use of 3D-printing in the shaping of neat PLA and PLA/TPU blend was generally very beneficial; on the other hand, due to the differences in the orientation of the GF reinforcements, there could be certain reductions in the mechanical performance of PLA/GF and PLA/TPU/GF composite specimens.
Subject Keywords
Thermoplastic polyurethane elastomer
,
3D-printing
,
Injection molding
,
Polylactide
,
Glass fiber
URI
https://hdl.handle.net/11511/41154
Journal
JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS
DOI
https://doi.org/10.1177/0892705718772867
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide
Varsavas, S. Deniz; Kaynak, Cevdet (2018-06-01)
The purpose of this study was to investigate how optimum mechanical properties (strength-modulus-toughness) of inherently very brittle polylactide (PLA) could be obtained by reinforcing with E-glass fibers (GF) and blending with thermoplastic polyurethane elastomer (TPU). Composites and blends were compounded by twin-screw extruder melt mixing, while specimens were shaped by injection molding. SEM analyses revealed that 15 wt% GF and 10 wt% TPU domains, alone and together, could be uniformly distributed in ...
Mechanical behaviour of polymeric lattice structures produced by additive manufacturing
Kalaycıoğlu, Şükrü Güray; Özerinç, Sezer; Department of Mechanical Engineering (2022-11)
Additive manufacturing (AM) is a manufacturing method based on the layer-by-layer deposition of the desired geometry. Polymer AM provides means to produce compliant polymeric structures for impact-absorbing applications. The recent introduction of foaming elastomeric filaments opened a new design space for achieving optimized impact absorbance performance. This thesis investigates this route through the mechanical testing of solid and cellular polymer foam structures produced by additive manufacturing. The...
Performance of polylactide biopolymer as matrix material for woven fiber composite laminates
Demirok, Gokberk; Kaynak, Cevdet (2022-01-01)
The first purpose of this study was, as the first time in the literature, to investigate usability of polylactide (PLA) biopolymer as the matrix of high-performance composite laminated structures having woven forms of glass and carbon fibers. For this purpose, 2-14 layers of 2 × 2 twill Carbon Fiber (CF) and 1 × 1 plain weave Glass Fiber (GF) forms were stacked by PLA powders followed by consolidation of these layers by compression molding technique. After conducting various tests and analysis it was observ...
Mechanical properties of soft liner-poly(methyl methacrylate)-based denture material
Usanmaz, Ali; Latifoglu, MA; Dogan, A; Akkas, N; Yetmez, M (Wiley, 2002-07-18)
In this study, the mechanical properties of two different permanent soft lining materials and their bonding to poly(methyl methacrylate) (PMMA) were compared. Both of the soft liners were heat-cured commercial materials. The polymerization was carried out by conventional methods suggested by manufacturer, and the curing was done at the temperature of boiling water for 5, 15, 25, and 35 min. The sample groups were tested in the computer-aided tensile-testing machine at a rate of 2 mm/min. The slow rate helps...
Isocyanate functionalization of nano-boehmite for the synthesis of polyurethane organic-inorganic hybrid materials
Eroğlu, Gülden; Gündüz, Güngör; Çolak, Üner; Department of Polymer Science and Technology (2011)
In this study, organic-inorganic hybrid materials were prepared from polyurethane and boehmite. It was achieved by polymerizing monomers in the presence of functional nano-particles of boehmite with cyanate groups. The produced polyurethane organic-inorganic hybrid materials with enhanced mechanical properties were used for coating applications. Plate-like boehmite nano-particles were produced by hydrothermal process from aluminum hydroxide which was first ground in a high energy ball-mill, and then, proces...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Kaynak, “Performance comparison of the 3D-printed and injection-molded PLA and its elastomer blend and fiber composites,”
JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS
, pp. 501–520, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41154.