Direct Numerical Simulation of Liquid Flow in a Horizontal Microchannel

2005-07-21
Numerical Simulations of liquid flow in a micro-channel between two horizontal plates are performed. The channel is infinite in streamwise and spanwise directions and its height is taken as 3.1 x 10(-4) m which falls within the dimension ranges of micro-channels. The Navier-Stokes equations with the addition of Brinkman number (Br) to the energy equation are used as the governing equations and a spectral methods based approach is applied to obtain the required accuracy to handle liquid flow in the micro-channel. It is known for micro-channels that Br combines the effects of conduction and viscous dissipation in liquids and is also a way of comparing the importance of later relative to former. A laminar flow of a liquid in a micro-channel shows different characteristics compared to a similar flow in a macro-channel. To observe the differences, three different cases are run over each of a range of Reynolds numbers: one with no axial conduction assumption that correspond to a case similar to macro-channel flow, another case with axial conduction included in the energy equation to simulate one of the main differences and lastly a case with inclusion of Br number in the governing equations. The results are compared with each other to see the effects of axial conduction and Br inclusion. A qualitative comparison is made with the previous results in literature.

Suggestions

Direct numerical simulation of liquid flow in a horizontal microchannel
Kükrer, Cenk Evren; Tarı, İlker; Department of Mechanical Engineering (2005)
Numerical simulations of liquid flow in a micro-channel between two horizontal plates are performed. The channel is infinite in streamwise and spanwise directions and its height is taken as m, which falls within the dimension ranges of microchannels. The Navier-Stokes equations with the addition of Brinkman number (Br) to the energy equation are used as the governing equations and spectral methods based approach is applied to obtain the required accuracy to handle liquid flow in the microchannel. It is know...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
Sert, Cüneyt (ASME International, 2003-5-20)
<jats:p>Numerical simulations of laminar, forced convection heat transfer for reciprocating, two-dimensional channel flows are performed as a function of the penetration length, Womersley (α) and Prandtl (Pr) numbers. The numerical algorithm is based on a spectral element formulation, which enables high-order spatial resolution with exponential decay of discretization errors, and second-order time-accuracy. Uniform heat flux and constant temperature boundary conditions are imposed on certain regions of the ...
Numerical Simulation of Rarefied Laminar Flow past a Circular Cylinder
Çelenligil, Mehmet Cevdet (2014-07-18)
Numerical simulations have been obtained for two-dimensional laminar flows past a circular cylinder in the transitional regime. Computations are performed using the direct simulation Monte Carlo method for Knudsen numbers of 0.02 and 0.2 and Mach numbers of 0.102 and 0.4. For these conditions, Reynolds number ranges from 0.626 to 24.63 and the flows are steady. Results show that separation occurs in the wake region for the flow with Mach number of 0.4 and Knudsen number of 0.02, but for the other eases flow...
Elliptical Pin Fins as an Alternative to Circular Pin Fins for Gas Turbine Blade Cooling Applications Part 2 Wake Flow Field Measurements and Visualization Using Particle Image Velocimetry
Uzol, Oğuz (null; 2001-06-07)
Extensive wake flow field measurements and visualizations are conducted using particle image velocimetry (PIV) inside the wakes of the elliptical and circular pin fin arrays in order to better understand the flow physics and the loss mechanisms of these devices. The true-mean velocity field inside the wake two diameters downstream of the pin fin arrays is obtained by collecting and ensemble averaging a large number of PIV samples in the midplane of the test section. Additional experiments are also conducted...
Citation Formats
İ. Tarı, “Direct Numerical Simulation of Liquid Flow in a Horizontal Microchannel,” 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41174.