Numerical Simulation of Rarefied Laminar Flow past a Circular Cylinder

2014-07-18
Numerical simulations have been obtained for two-dimensional laminar flows past a circular cylinder in the transitional regime. Computations are performed using the direct simulation Monte Carlo method for Knudsen numbers of 0.02 and 0.2 and Mach numbers of 0.102 and 0.4. For these conditions, Reynolds number ranges from 0.626 to 24.63 and the flows are steady. Results show that separation occurs in the wake region for the flow with Mach number of 0.4 and Knudsen number of 0.02, but for the other eases flows are attached. The effects of flow speed, rarefaction, domain size and the outflow boundary conditions are investigated. Results show sensitivity to the domain size and the outflow boundary conditions in the low Mach number calculations, but as the speed increases the sensitivity decreases. Although no experimental data are available for direct comparison, the present calculations are found to be in very good agreement with the findings of other researchers.

Suggestions

Heat Transfer Simulation of Rarefied Laminar Flow past a Circular Cylinder
Çelenligil, Mehmet Cevdet (2016-07-15)
Direct simulation Monte Carlo calculations are performed to study the heat transfer in laminar, rarefied flows past a circular cylinder. Results are obtained for flows with Knudsen numbers of 0.02 and 0.2; Mach numbers of 0.102 and 0.4, and also several cylinder temperatures are considered. Calculations show that these flows are attached except for the one with a Knudsen number of 0.02 and a Mach number of 0.4 in which separation occurs in the wake of the cylinder. Results are little affected by the changes...
Numerical Solution and Stability Analysis of Transient MHD Duct Flow
Tezer, Münevver (2018-11-01)
This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a rectangular duct in terms of the velocity of the fluid and the induced magnetic field by using the radial basis function (RBF) approximation. The inhomogeneities in the Poisson’s type MHD equations are approximated using the polynomial functions (1+r) and the particular solution is found satisfying both the equations and the boundary conditions (no-slip and insulated walls). The Euler scheme is used for advancing the solution to ste...
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
Sert, Cüneyt (ASME International, 2003-5-20)
<jats:p>Numerical simulations of laminar, forced convection heat transfer for reciprocating, two-dimensional channel flows are performed as a function of the penetration length, Womersley (α) and Prandtl (Pr) numbers. The numerical algorithm is based on a spectral element formulation, which enables high-order spatial resolution with exponential decay of discretization errors, and second-order time-accuracy. Uniform heat flux and constant temperature boundary conditions are imposed on certain regions of the ...
Numerical investigation of flow control over an airfoil with synthetic jets and its optimization
Akçayöz, Eray; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2008)
In this work, an active flow control method is studied numerically by using a synthetic jet over a NACA 0015 airfoil. Unsteady, turbulent flows over the NACA 0015 airfoil are computed using a Navier-Stokes solver. The Spalart-Allmaras turbulence model is employed in all computations. Unsteady flow solutions are computed in parallel using Parallel Virtual Machine library routines in a computer cluster. The synthetic jet is implemented to the flow solver as a boundary condition. Response Surface Methodology i...
Nanoscale Thermal Transport in Single, Bilayer Graphene, and Graphite
Gholivand, Hamed; Donmezer, Nazli (2016-10-12)
In this study, ab-initio calculations were performed to obtain phonon dispersions of single, bilayer graphene, and graphite structures. Using these dispersions single mode relaxation times, thermal conductivities, and mean free paths (MFPs) have been calculated. Finally, calculated variables were used to understand the effects of additional layers to thermophysical properties, phonon mode contributions to thermal conductivity, and the limits for ballistic-diffusive heat transfer of single, bilayer graphene,...
Citation Formats
M. C. Çelenligil, “Numerical Simulation of Rarefied Laminar Flow past a Circular Cylinder,” 2014, vol. 1628, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42411.