Thermal loading and unloading of a solid cylinder subjected to periodic internal energy cycling

2017-03-01
An analytical model is developed to estimate partially plastic loading and unloading behavior of a transient internal energy cycling solid cylinder. The cylinder is initially at zero temperature, but for times greater than zero, heat is generated or consumed internally at a time dependent rate. The transient temperature distribution in the cylinder is obtained by using Duhamel's theorem. As the cylinder is heated or cooled slowly the uncoupled theory of thermal stress is used. Under these circumstances elastic and plastic solutions are obtained in conformity with the generalized plane strain condition. When variable amplitude periodic internal energy cycling occurs within the cylinder, two different plasticization modes may take place depending on the parameters that define the thermal load. Corresponding to these, four plastic solutions based on different mathematical forms of Tresca's yield criterion are derived considering linearly hardening material behavior. Sudden unloading approximation is used to model unloading from partially plastic to plastically predeformed elastic states of stress. The model is verified in comparison to a purely numerical solution and by observing satisfaction of equilibrium, interface and boundary conditions in every stage of deformation. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK

Suggestions

Elastic Response of Heat Generating Rod at a Variable Generating Rate
Eraslan, Ahmet Nedim; Varlı, Ekin (2014-09-28)
The aim of this study is to develop a computational model to analyze thermally induced stress and deformation in a heat generating solid rod. The rod is initially at zero temperature, but for times greater than zero heat is generated internally at both space and time dependent rate. As the rod is heated up slowly an uncoupled solution is realized. The heat conduction equation with a variable generation rate is solved by a finite element collocation method. Two different generation rates are handled. The num...
Analyses of elastic limit heat loads in thick walled tubes subjected to periodic surface temperatures: analytical treatment
APATAY, TUNÇ; Eraslan, Ahmet Nedim (2018-01-01)
ANALYTICAL SOLUTIONS ARE DERIVED TO ANALYZE elastic limit heat loads in tubes subjected to periodic surface temperatures. The tube is initially at zero temperature and for the times greater than zero one of the surfaces of the cylinder is subject to a periodic boundary condition while the other surface is insulated. For the transient temperature distribution, the heat conduction equation is solved by using Duhamel's theorem. The uncoupled theory of thermoelasticity is used as the cylinder is heated or coole...
Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (IOP Publishing, 2003-11-07)
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging...
Analytical solution to thermal loading and unloading of a cylinder subjected to periodic surface heating
Eraslan, Ahmet Nedim (2016-01-01)
An attempt is made to develop an analytical model for the prediction of thermal loading into a partially plastic state and unloading into an elastic state of a cylinder subjected to periodic boundary condition. The uncoupled theory of thermoelasticity is used as the cylinder is heated or cooled slowly. Transient temperature distribution in the cylinder is obtained by the use of Duhamel's theorem. It is assumed that the ends of the cylinder are free and hence a state of generalized plane strain is operative ...
Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process
Shabgard, Mohammadreza; Oliaei, Samad Nadimi Bavil; Seyedzavvar, Mirsadegh; Najadebrahimi, Ahmad (2011-12-01)
An axisymmetric three-dimensional model or temperature distribution in the electrical discharge machining process has been developed using the finite element method to estimate the surface integrity characteristics of AISI H13 tool steel as workpiece. White layer thickness, depth of heat affected zone, and arithmetical mean roughness consisting of the studied surface integrity features on which the effect of process parameters, including pulse on-time and pulse current were investigated. Additionally, the e...
Citation Formats
A. N. Eraslan, “Thermal loading and unloading of a solid cylinder subjected to periodic internal energy cycling,” ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, pp. 340–357, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41267.