An experimental and numerical study on the combustion of lignites from different geographic origins

2020-10-15
Özer, Burak
Debiagi, Paulo Eduardo Amaral
Hasse, Christian
Faravelli, Tiziano
Kazanç Özerinç, Feyza
Coal combustion involves multi-scale, multi-phase and multi-component aspects, in a process where both transport phenomena and reaction kinetics must be considered. The aim of the work is to investigate the differences between the combustion characteristics of Turkish (Soma lignite, Tuncbilek lignite, Afsin-Elbistan lignite) and German (Rhenish lignite) lignites. Combustion characteristics of these lignites were investigated experimentally and numerically. Experiments were conducted using a high temperature (1000 degrees C) and high heating rate (similar to 104 degrees C/s) drop tube furnace (DTF), along with a thermogravimetric analyzer (TGA) at non-isothermal conditions (5, 10, 15, 20 degrees C/min). Both experimental trials were done in a dry air environment and atmospheric pressure. Additionally, DTF and TGA are the experimental setups used to validate the numerical model used in this work. The numerical part of the study includes the computational fluid dynamic analysis of DTF and the predictive multi-step kinetic model analysis of the fuel particle. TGA experiments showed that fuel ratio has an effect on the ignition times. Moreover, maximum reaction rates obtained by TGA experiments were inversely proportional to the ash contents of the fuels used. High heating rate DTF experiments showed similar combustion behaviours with TGA experiments. According to DTF experiments, RL has the highest reactivity (RL: 7.8 s(-1)) among all fuels (AEL: 5.3, SL: 4.7, TL: 2.9 s(-1)). In comparison to experimental data, PoliMi model predictions on high-temperature volatile yields are satisfactory with 5-7% errors. PoliMi model overpredicted the devolatilization rates whereas char oxidation rate predictions seem to be lower than the experimental results.

Suggestions

Characterization and kinetics of light crude oil combustion in the presence of metallic salts
Kök, Mustafa Verşan (American Chemical Society (ACS), 2004-05-01)
In this research, a reaction cell, thermogravimetry (TG), and differential thermal analysis (DTA) were used to characterize the light crude oil combustion and kinetics in the presence of copper(I) chloride (CuCl) and magnesium chloride (MgCl2·6H2O). In TG-DTA experiments with magnesium chloride, three reaction regions were identified, known as distillation, low-temperature oxidation (LTO), and high-temperature oxidation (HTO). In the case of copper(I) chloride, two main transitional stages are observed with...
A Study on coal combustion: experiments and modelling
Özer, Burak; Kazanç Özerinç, Feyza; Department of Mechanical Engineering (2019)
Coal combustion involves multi-scale, multi-phase and multi-component aspects, in a process where both transport phenomena and reaction kinetics must be considered. The aim of the work is to investigate how the lignite characteristics and origin affect the combustion kinetics at different heating rates. Three Turkish lignites from different regions (Soma lignite, Tunçbilek lignite, Afşin-Elbistan lignite) and one German lignite (Rhenish lignite) were used. Combustion characteristics of these lignites are in...
A study on the effects of catalysts on pyrolysis and combustion characteristics of Turkish lignite in oxy-fuel conditions
ABBASI-ATIBEH, Ehsan; Yozgatlıgil, Ahmet (Elsevier BV, 2014-01-01)
The catalytic pyrolysis and combustion characteristics of low calorific value Turkish lignite in various ambient conditions were explored and the evolution of gases during pyrolysis tests was examined using a Thermogravimetric Analyzer coupled with a Fourier Transform Infrared spectrometer (TGA-FTIR). Potassium carbonate (K2CO3), calcium hydroxide (Ca(OH)(2)) and iron (III) oxide (Fe2O3) were employed as precursors of the catalysts and compared to the Raw-form (no catalyst added) to investigate the effects ...
A new approach for the prediction of ash fusion temperatures: A case study using Turkish lignites
Ozbayoglu, G; Ozbayoglu, ME (Elsevier BV, 2006-03-01)
Prediction of ash fusion temperatures by using the chemical composition of the ash has previously been conducted only with linear correlations. In this study, a new technique is presented for predicting the fusibility temperatures of ash. Non-linear correlations are developed by using the chemical composition of ash (eight oxides) and coal parameters (ash content, specific gravity, Hardgrove index and mineral matter content). Regression analyses are conducted using information for Turkish lignites. Regressi...
A study on the reactivity of various chars from Turkish fuels obtained at high heating rates
Magalhaes, Duarte; Riaza, Juan; Kazanç Özerinç, Feyza (Elsevier BV, 2019-03-01)
This work investigates the reactivity of chars produced from Turkish biomass and lignite fuels using a wire mesh reactor at high temperature and high heating rate. The fuels studied were olive residue, almond shell, and Soma lignite. Blends of Soma lignite-olive residue and Soma lignite-almond shell were prepared in proportions of 75:25 and 50:50 wt%, respectively. A wire mesh reactor is used for the pyrolysis of the samples in a controlled inert atmosphere at a uniform temperature of 1600 degrees C and at ...
Citation Formats
B. Özer, P. E. A. Debiagi, C. Hasse, T. Faravelli, and F. Kazanç Özerinç, “An experimental and numerical study on the combustion of lignites from different geographic origins,” Fuel, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41288.