Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Solution of large-scale scattering problems with the multilevel fast multipole algorithm parallelized on distributed-memory architectures
Download
index.pdf
Date
2007-11-09
Author
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
37
views
0
downloads
Cite This
We present the solution of large-scale scattering problems involving three-dimensional closed conducting objects with arbitrary shapes. With an efficient parallelization of the multilevel fast multipole algorithm on relatively inexpensive computational platforms using distributed-memory architectures, we perform the iterative solution of integral-equation formulations that are discretized with tens of millions of unknowns. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions.
Subject Keywords
Large-scale systems
,
Computational electromagnetics
,
Distributed computing
,
Shape
,
Testing
,
Computer architecture
,
Concurrent computing
,
Integral equations
,
Electromagnetic scattering
,
MLFMA
URI
https://hdl.handle.net/11511/41343
DOI
https://doi.org/10.1109/iscis.2007.4456837
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Solutions of electromagnetics problems involving hundreds of millions of unknowns with parallel multilevel fast multipole algorithmt
Ergül, Özgür Salih (2009-06-05)
We present the solution of extremely large electromagnetics problems formulated with surface integral equations (SIEs) and discretized with hundreds of millions of unknowns. Scattering and radiation problems involving three-dimensional closed metallic objects are formulated rigorously by using the combined-field integral equation (CFIE). Surfaces are discretized with small triangles, on which the Rao-Wilton-Glisson (RWG) functions are defined to expand the induced electric current and to test the boundary c...
Efficient solution of the combined-field integral equation with the parallel multilevel fast multipole algorithm
Gürel, Levent; Ergül, Özgür Salih (2007-08-31)
We present fast and accurate solutions of large-scale scattering problems formulated with the combined-field integral equation. Using the multilevel fast multipole algorithm (MLFMA) parallelized on a cluster of computers, we easily solve scattering problems that are discretized with tens of millions of unknowns. For the efficient parallelization of MLFMA, we propose a hierarchical partitioning scheme based on distributing the multilevel tree among the processors with an improved load-balancing. The accuracy...
Fast and accurate solutions of extremely large scattering problems involving three-dimensional canonical and complicated objects
Ergül, Özgür Salih (2009-07-23)
We present fast and accurate solutions of extremely large scattering problems involving three-dimensional metallic objects discretized with hundreds of millions of unknowns. Solutions are performed by the multilevel fast multipole algorithm, which is parallelized efficiently via a hierarchical partition strategy. Various examples involving canonical and complicated objects are presented in order to demonstrate the feasibility of accurately solving large-scale problems on relatively inexpensive computing pla...
Solution of extremely large integral-equation problems
Ergül, Özgür Salih; Gürel, L. (2007-09-21)
We report the solution of extremely large integral-equation problems involving electromagnetic scattering from conducting bodies. By orchestrating diverse activities, such as the multilevel fast multipole algorithm, iterative methods, preconditioning techniques, and parallelization, we are able to solve scattering problems that are discretized with tens of millions of unknowns. Specifically, we report the solution of a closed geometry containing 42 million unknowns and an open geometry containing 20 million...
Fast and accurate solutions of scattering problems involving dielectric objects with moderate and low contrasts
Ergül, Özgür Salih (2007-08-31)
We consider the solution of electromagnetic scattering problems involving relatively large dielectric objects with moderate and low contrasts. Three-dimensional objects are discretized with Rao-Wilton-Glisson functions and the scattering problems are formulated with surface integral equations. The resulting dense matrix equations are solved iteratively by employing the multilevel fast multipole algorithm. We compare the accuracy and efficiency of the results obtained by employing various integral equations ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. S. Ergül, “Solution of large-scale scattering problems with the multilevel fast multipole algorithm parallelized on distributed-memory architectures,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41343.