Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimal Design of a Miniature Quad Tilt Rotor UAV
Date
2015-06-12
Author
Kahvecioglu, Ahmet Caner
Alemdaroglu, Nafiz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
336
views
0
downloads
Cite This
This paper describes the design procedure of a convertible miniature (mini and micro) quad tilt rotor unmanned air vehicle (UAV), which has about 2 meters of wing span, one hour of mission time and 5 kilograms of total weight. The aircraft is driven by four brushless direct current motors, and the structure of it completely made of composite materials. When the wing and tail of the aircraft are dismounted, it operates as a quad- rotor with tilting rotors. The aircraft is planned to carry a gimbal camera weighing about 700 grams. The primary operation areas of the aircraft are intelligence, surveillance and reconnaissance missions in an operational radius of 15 km. The aircraft is capable of changing its flight modes between horizontal and vertical flights as required by the mission profile.
Subject Keywords
Design
,
Mini UAV
,
Optimization
,
Quad-rotor
,
Tilt rotor
,
VTOL
URI
https://hdl.handle.net/11511/66031
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Control system design and implementation of a tilt rotor UAV
Cevher, Levent; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
In this thesis, a hybrid vertical take off and landing unmanned air vehicle platform is designed and developed. The platform uses tricopter configuration for takeoff and landing while it uses its fixed wings for forward flight. Control algorithms are developed for the VTOL aircraft. For this purpose, first nonlinear simulation code is developed in Matlab/Simulink environment. The simulation uses the wind tunnel experimental data for the propellers and aerodynamic data obtained from a package program XFLR 5 ...
Aerodynamic design and control of tandem wing unmanned aerial vehicle
Kaya, Taşkın; Özgen, Serkan; Department of Aerospace Engineering (2019)
This thesis presents an approach towards the design methodology of electrical propulsion, tandem wing unmanned aerial vehicle. Due to its possible rewarding features, tandem wing design is investigated as the main subject of this study. The stability and control characteristics of tandem wing aircraft are critical since the interference between the two wings may result in nonlinear aerodynamic characteristics for varying angles of attack. Thus, the design of the controller system requires careful handling, ...
Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements
Deng, Shuanghou; Perçin, Mustafa; van Oudheusden, Bas (2016-02-01)
This study explores the aerodynamic characteristics of a flapping-wing micro aerial vehicle (MAV) in hovering configuration by means of force and flowfield measurements. The effects of flapping frequency and wing geometry on force generation were examined using a miniature six-component force sensor. Additional high-speed imaging allowed identification of the notable different deformation characteristics of the flexible wings under vacuum condition in comparison to their behavior in air, illustrating the re...
Design and aerodynamic analysis of a VTOL tilt-wing UAV
Cakir, Hasan; Kurtuluş, Dilek Funda (2022-01-01)
The aerodynamic design and analysis of an Unmanned Air Vehicle, capable of vertical take-off and landing by employing fixed four rotors on the tilt-wing and two rotors on the tilt-tail, will be presented in this study. Both main wing and the horizontal tail can be tilted 90 degrees. During VTOL, transition and forward flight, aerodynamic and thrust forces have been employed. Different flight conditions, including the effects of angle of attack, side slip, wing tilt angle and control surfaces deflection angl...
Hovering Control of a Tilt-Wing UAV
Çakır, Hasan; Kurtuluş, Dilek Funda (2019-09-20)
In this study, the design and analysis of hovering controller of an UAV which is capable of doing vertical take-off and landing using the fixed six rotors placed on the tilt-wing and tilt-tail will be explained. The aircraft will have four rotors on the wing and two rotors on the tail. The main wing and horizontal tail will be capable of 90° tilting. Whole flight is separated into three flight modes, which are VTOL, Transition and Forward Flight, to have a robust control on aircraft. Only hover control of t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. C. Kahvecioglu and N. Alemdaroglu, “Optimal Design of a Miniature Quad Tilt Rotor UAV,” 2015, p. 1118, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66031.