Seasonal and long-term trends in the spatial heterogeneity of lake phytoplankton communities over two decades of restoration and climate change

Fu, Hui
Yuan, Guixiang
Özkan, Korhan
Johansson, Liselotte Sander
Søndergaard, Martin
Lauridsen, Torben L.
Jeppesen, Erik
World-wide, reducing the external nutrient loading to lakes has been the primary priority of lake management in the restoration of eutrophic lakes over the past decades, and as expected this has resulted in an increase in the local environmental heterogeneity, and thus biotic heterogeneity, within lakes. However, little is known about how the regional spatial heterogeneity of lake biotic communities changes with restoration across a landscape. Using a long-term monitoring dataset from 20 Danish lakes, we elucidated the seasonal and long-term trends in the spatial heterogeneity of climate, local abiotic variables and phytoplankton communities over two decades of restoration and climate change at landscape level. We found significant seasonality in the spatial heterogeneity of most climatic and local drivers as well as in the total beta diversity (Sørensen coefficient) and its turnover components (Simpson coefficient) of phytoplankton communities among the lakes. The seasonality tended to be less marked in deep than in shallow lakes. We found significant spatial homogenisation of most local drivers (except for alkalinity) and phytoplankton communities after two decades of restoration and that turnover dominated the temporal responses of the total beta diversity of phytoplankton communities. Path analyses showed that the homogenisation of phytoplankton communities was mainly due to a decrease in spatial heterogeneity of total phosphorus and Schmidt stability in shallow lakes and to a decrease in spatial total phosphorus and total nitrogen heterogeneity in deep lakes. However, albeit weakly, the spatial heterogeneity of the phytoplankton communities was affected indirectly by climatic warming in both shallow and deep lakes and directly by wind speed in shallow lakes. We conclude that restoration of eutrophic lakes may lead to an increase in the local heterogeneity of phytoplankton communities at lake scale and an increase in homogeneity at landscape scale.
Science of the Total Environment


Quantifying the effects of climate change on hydrological regime and stream biota in a groundwater-dominated catchment: A modelling approach combining SWAT-MODFLOW with flow-biota empirical models
Liu, Wei; Bailey, Ryan T.; Andersen, Hans Estrup; Jeppesen, Erik; Nielsen, Anders; Peng, Kai; Molina-Navarro, Eugenio; Park, Seonggyu; Thodsen, Hans; Trolle, Dennis (Elsevier BV, 2020-11-01)
Climate change may affect stream ecosystems through flow regime alterations, which can be particularly complex in streams with a significant groundwater contribution. To quantify the impacts of climate change on hydrological regime and subsequently the stream biota, we linked SWAT-MODFLOW (A model coupling the Soil and Water Assessment Tool and the Modular Finite-difference Flow Model) with flow-biota empirical models that included indices for three key biological taxonomic identities (fish, macroinvertebra...
Assessment of PCB contamination, the potential for in situ microbial dechlorination and natural attenuation in an urban watershed at the East Coast of the United States
Kaya, Devrim; Sowers, Kevin R.; Demirtepe, Hale; Stiell, Brian; Baker, Joel E.; İmamoğlu, İpek; Kjellerup, Birthe (Elsevier BV, 2019-09-15)
Sediment contamination is a major environmental issue in many urban watersheds and coastal areas due to the potential toxic effects of contaminants on biota and human health. Characterizing and delineating areas of sediment contamination and toxicity are important goals of coastal resource management in terms of ecological and economical perspectives. Core and surficial sediment samples were collected from an industrialized urban watershed at the East Coast of the United Stated and analyzed to evaluate the ...
Valuation of environmental improvements in a specially protected marine area: A choice experiment approach in Gocek Bay, Turkey
Can, Ozge; Alp, Emre (Elsevier BV, 2012-11-15)
Although the Gocek Bay area was declared as a specially protected area by General Directorate of Natural Assets Protection, the region is threatened because of pollution resulting from increased boat tourism and lack of efficient policies. Extensive measures are being planned in order to protect the region. Coastal management requires the use of technical, social political and economic tools to create a comprehensive management strategy. For environmental investments, it is necessary that benefits and the c...
Managing aquatic ecosystems and water resources under multiple stress - An introduction to the MARS project
Hering, Daniel; Carvalho, Laurence; Argillier, Christine; Beklioğlu, Meryem; Borja, Angel; Cardoso, Ana Cristina; Duel, Harm; Ferreira, Teresa; Globevnik, Lidija; Hanganu, Jenica; Hellsten, Seppo; Jeppesen, Erik; Kodes, Vit; Solheim, Anne Lyche; Noges, Tiina; Ormerod, Steve; Panagopoulos, Yiannis; Schmutz, Stefan; Venohr, Markus; Birk, Sebastian (Elsevier BV, 2015-01-15)
Water resources globally are affected by a complex mixture of stressors resulting from a range of drivers, including urban and agricultural land use, hydropower generation and climate change. Understanding how stressors interfere and impact upon ecological status and ecosystem services is essential for developing effective River Basin Management Plans and shaping future environmental policy. This paper details the nature of these problems for Europe's water resources and the need to find solutions at a rang...
Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beysehir
Bucak, Tuba; Trolle, Dennis; Tavsanoglu, U. Nihan; Cakiroglu, A. Idil; Ozen, Arda; Jeppesen, Erik; Beklioğlu, Meryem (Elsevier BV, 2018-04-15)
Climate change and intense land use practices are the main threats to ecosystem structure and services of Mediterranean lakes. Therefore, it is essential to predict the future changes and develop mitigation measures to combat such pressures. In this study, Lake Beysehir, the largest freshwater lake in the Mediterranean basin, was selected to study the impacts of climate change and various land use scenarios on the ecosystem dynamics of Mediterranean freshwater ecosystems and the services that they provide. ...
Citation Formats
H. Fu et al., “Seasonal and long-term trends in the spatial heterogeneity of lake phytoplankton communities over two decades of restoration and climate change,” Science of the Total Environment, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: