Quantifying the effects of climate change on hydrological regime and stream biota in a groundwater-dominated catchment: A modelling approach combining SWAT-MODFLOW with flow-biota empirical models

Liu, Wei
Bailey, Ryan T.
Andersen, Hans Estrup
Jeppesen, Erik
Nielsen, Anders
Peng, Kai
Molina-Navarro, Eugenio
Park, Seonggyu
Thodsen, Hans
Trolle, Dennis
Climate change may affect stream ecosystems through flow regime alterations, which can be particularly complex in streams with a significant groundwater contribution. To quantify the impacts of climate change on hydrological regime and subsequently the stream biota, we linked SWAT-MODFLOW (A model coupling the Soil and Water Assessment Tool and the Modular Finite-difference Flow Model) with flow-biota empirical models that included indices for three key biological taxonomic identities (fish, macroinvertebrates and macrophytes) and applied the model-complex to a groundwater-dominated catchment in Denmark. Effects of predicted climate change towards the end of this century relative to the reference period (1996-2005) were tested with two contrasting climate change scenarios of different greenhouse gas emissions (Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 8.5) and analysed for all subbasins grouped into streams of three size classes. The total water yield in the catchment did not change significantly (-1 +/- 4 (SD) mm yr(-1)) from the baseline in the RCP2.6 scenario, while it increased by 9 = 11 mm yr(-1) in the RCP8.5 scenario. The three stream size classes underwent different alterations in flow regime and also demonstrated different biotic responses to climate change. All large and some small streams were impacted most heavily by the climate change, where fish and macrophyte indices decreased up to 14.4% and 11.2%, respectively, whereas these indices increased by up to 14.4% and 6.0%, respectively, in the medium and some small streams. The climate change effects were, as expected, larger in the RCP8.5 scenario than in the RCP2.6 scenario. Our study is the first to quantify the impacts of streamflow alterations induced by climate change on stream biota beyond specific species.


Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beysehir
Bucak, Tuba; Trolle, Dennis; Tavsanoglu, U. Nihan; Cakiroglu, A. Idil; Ozen, Arda; Jeppesen, Erik; Beklioğlu, Meryem (Elsevier BV, 2018-04-15)
Climate change and intense land use practices are the main threats to ecosystem structure and services of Mediterranean lakes. Therefore, it is essential to predict the future changes and develop mitigation measures to combat such pressures. In this study, Lake Beysehir, the largest freshwater lake in the Mediterranean basin, was selected to study the impacts of climate change and various land use scenarios on the ecosystem dynamics of Mediterranean freshwater ecosystems and the services that they provide. ...
Assessment of PCB contamination, the potential for in situ microbial dechlorination and natural attenuation in an urban watershed at the East Coast of the United States
Kaya, Devrim; Sowers, Kevin R.; Demirtepe, Hale; Stiell, Brian; Baker, Joel E.; İmamoğlu, İpek; Kjellerup, Birthe (Elsevier BV, 2019-09-15)
Sediment contamination is a major environmental issue in many urban watersheds and coastal areas due to the potential toxic effects of contaminants on biota and human health. Characterizing and delineating areas of sediment contamination and toxicity are important goals of coastal resource management in terms of ecological and economical perspectives. Core and surficial sediment samples were collected from an industrialized urban watershed at the East Coast of the United Stated and analyzed to evaluate the ...
Managing aquatic ecosystems and water resources under multiple stress - An introduction to the MARS project
Hering, Daniel; Carvalho, Laurence; Argillier, Christine; Beklioğlu, Meryem; Borja, Angel; Cardoso, Ana Cristina; Duel, Harm; Ferreira, Teresa; Globevnik, Lidija; Hanganu, Jenica; Hellsten, Seppo; Jeppesen, Erik; Kodes, Vit; Solheim, Anne Lyche; Noges, Tiina; Ormerod, Steve; Panagopoulos, Yiannis; Schmutz, Stefan; Venohr, Markus; Birk, Sebastian (Elsevier BV, 2015-01-15)
Water resources globally are affected by a complex mixture of stressors resulting from a range of drivers, including urban and agricultural land use, hydropower generation and climate change. Understanding how stressors interfere and impact upon ecological status and ecosystem services is essential for developing effective River Basin Management Plans and shaping future environmental policy. This paper details the nature of these problems for Europe's water resources and the need to find solutions at a rang...
Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations
Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Sondergaard, Martin; Hansen, Kristina M.; Andersen, Hans E.; Lauridsen, Torben L.; Liboriussen, Lone; Beklioğlu, Meryem; Ozen, Arda; Olesen, Jorgen E. (Wiley, 2009-09-01)
Climate change may have profound effects on phosphorus (P) transport in streams and on take eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and and climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In takes, higher eutrophication can be expected, reinforced by temperature-media...
Environmental sustainability assessment using dynamic Autoregressive-Distributed Lag simulations-Nexus between greenhouse gas emissions, biomass energy, food and economic growth
Sarkodie, Samuel Asumadu; Strezov, Vladimir; Weldekidan, Haftom; Asamoah, Ernest Frimpong; Owusu, Phebe Asantewaa; Doyi, Israel Nutifafa Yawo (Elsevier BV, 2019-06-10)
Increasing population demand has triggered the enhancement of food production, energy consumption and economic development, however, its impact on climate change has become a global concern. This study applied a novel environmental sustainability assessment tool using dynamic Autoregressive-Distributed Lag (ARDL) simulations for model estimation of the relationships between greenhouse gas (GHG) emissions, energy, biomass, food and economic growth for Australia using data spanning from 1970 to 2017. The stud...
Citation Formats
W. Liu et al., “Quantifying the effects of climate change on hydrological regime and stream biota in a groundwater-dominated catchment: A modelling approach combining SWAT-MODFLOW with flow-biota empirical models,” SCIENCE OF THE TOTAL ENVIRONMENT, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68531.