Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A performance study of the tangent distance method in transformation-invariant image classification
Date
2015-08-06
Author
Vural, Elif
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
168
views
0
downloads
Cite This
A common problem in image analysis is the transformation-invariant estimation of the similarity between a query image and a set of reference images representing different classes. This typically requires the comparison of the distance between the query image and the transformation manifolds of the reference images. The tangent distance algorithm is a popular method that estimates the manifold distance by employing a linear approximation of the transformation manifolds. In this paper, we present a performance analysis of the tangent distance method in image classification applications for general transformation models. In particular, we characterize the misclassification error in terms of the geometric properties of the individual manifolds such as their curvature, as well as their relative properties such as the separation between them. We then extend our results to a multi-scale analysis where the images are smoothed with a low-pass filter and study the effect of smoothing on the misclassification error. Our theoretical results are confirmed by experiments and may find use in the selection of algorithm parameters in multiscale transformation-invariant image analysis methods.
Subject Keywords
Tangent distance
,
Image classification
,
Hierarchical image registration
,
Performance analysis
URI
https://hdl.handle.net/11511/41683
DOI
https://doi.org/10.1109/icassp.2015.7179078
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis of Image Registration with Tangent Distance
Vural, Elif (2014-01-01)
The computation of the geometric transformation between a reference and a target image, known as registration or alignment, corresponds to the projection of the target image onto the transformation manifold of the reference image (the set of images generated by its geometric transformations). However, it often takes a nontrivial form such that the exact computation of projections on the manifold is difficult. The tangent distance method is an effective algorithm for solving this problem by exploiting a line...
A comparative study on pose estimation algorithms using visual data
Çetinkaya, Güven; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2012)
Computation of the position and orientation of an object with respect to a camera from its images is called pose estimation problem. Pose estimation is one of the major problems in computer vision, robotics and photogrammetry. Object tracking, object recognition, self-localization of robots are typical examples for the use of pose estimation. Determining the pose of an object from its projections requires 3D model of an object in its own reference system, the camera parameters and 2D image of the object. Mo...
Analysis of Descent-Based Image Registration
Vural, Elif (2013-01-01)
We present a performance analysis for image registration with gradient descent. We consider a typical multiscale registration setting where the global two-dimensional translation between a pair of images is estimated by smoothing the images and minimizing the distance between them with gradient descent. Our study particularly concentrates on the effect of noise and low-pass filtering on the alignment accuracy. We analyze the well-behavedness of the image distance function by estimating the neighborhood of t...
Alignment of uncalibrated images for multi-view classification
Arık, Sercan Ömer; Vural, Elif; Frossard, Pascal (2011-12-29)
Efficient solutions for the classification of multi-view images can be built on graph-based algorithms when little information is known about the scene or cameras. Such methods typically require a pairwise similarity measure between images, where a common choice is the Euclidean distance. However, the accuracy of the Euclidean distance as a similarity measure is restricted to cases where images are captured from nearby viewpoints. In settings with large transformations and viewpoint changes, alignment of im...
A Genetic Algorithms Based Classifier for Object Classification in Images
Yilmaz, Turgay; Yildirim, Yakup; Yazıcı, Adnan (2011-09-28)
Increase in the use of digital images has shown the need for modeling and querying the semantic content, which is usually defined using the objects in the images. In this paper, a Genetic Algorithm (GA) based object classification mechanism is developed for extracting the content of images. Objects are defined by using the Best Representative and Discriminative Feature (BRDF) model, where features are MPEG-7 descriptors. The classifier improves itself in time, with the genetic operations of GA.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Vural, “A performance study of the tangent distance method in transformation-invariant image classification,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41683.