Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
T-shaped crack problem for bonded orthotropic layers
Date
1994-06-01
Author
Erdogan, F.
Kadıoğlu, Fevzi Suat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
190
views
0
downloads
Cite This
The plane elasticity problem of two perfectly bonded orthotropic layers containing cracks perpendicular to and along the interface is considered. Cracks are extended to intersect the boundaries and each other in such a way that a crack configuration suitable to study the T-shaped crack problem is obtained. The problem is reduced to the solution of a system of singular integral equations with Cauchy type singularities. Numerical results for stress intensity factors and energy release rates are presented for various loading conditions and for isotropic as well as orthotropic material pairs. These results indicate that elementary strength of material type calculations for energy release rates provide a good approximation to the actual elasticity solution even for relatively short cracks, as long as the layer thicknesses are not very different.
Subject Keywords
Stress intensity factors
,
Interface crack
,
Elastic layers
,
Fracture-mechanics
,
Laminated plates
URI
https://hdl.handle.net/11511/41716
Journal
International Journal of Fracture
DOI
https://doi.org/10.1007/bf00032496
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
The free-end interface crack problem for bonded orthotropic layers
Kadıoğlu, Fevzi Suat (1995-01-01)
The plane elasticity problem of two bonded orthotropoic layers containing cracks perpendicular to and along the interface is considered. The cracks are extended to intersect the boundaries and each other in such a way that a crack configuration suitable to study the edge debonding problem associated with bonded dissimilar materials is obtained. The problem is reduced to the solution of a system of singular integral equations with Cauchy type singularities. Numerical results for stress intensity factors and ...
Cracked infinite cylinder with two rigid inclusions under axisymmetric tension
Toygar, M. Evren; Gecit, M. Rusen (2006-08-01)
This paper considers the problem of an axisymmetric infinite cylinder with a ring shaped crack at z = 0 and two ring-shaped rigid inclusions with negligible thickness at z = +/- L. The cylinder is under the action of uniformly distributed axial tension applied at infinity and its lateral surface is free of traction. It is assumed that the material of the cylinder is linearly elastic and isotropic. Crack surfaces are free and the constant displacements are continuous along the rigid inclusions while the stre...
Periodic crack problem for a functionally graded half-plane an analytic solution
YILDIRIM, BORA; Kutlu, Ozge; Kadıoğlu, Fevzi Suat (Elsevier BV, 2011-10-15)
The plane elasticity problem of a functionally graded semi-infinite plane, containing periodic imbedded or edge cracks perpendicular to the free surface is considered. Cracks are subjected to mode one mechanical or thermal loadings, which are represented by crack surface tractions. Young's modulus, conduction coefficient, coefficient of thermal expansion are taken as exponentially varying functions of the depth coordinate where as Poisson ratio and thermal diffusivity are assumed to be constant. Fourier int...
Numerical Solution and Stability Analysis of Transient MHD Duct Flow
Tezer, Münevver (2018-11-01)
This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a rectangular duct in terms of the velocity of the fluid and the induced magnetic field by using the radial basis function (RBF) approximation. The inhomogeneities in the Poisson’s type MHD equations are approximated using the polynomial functions (1+r) and the particular solution is found satisfying both the equations and the boundary conditions (no-slip and insulated walls). The Euler scheme is used for advancing the solution to ste...
Thermal convection in the presence of a vertical magnetic field
Guray, E.; Tarman, H. I. (Springer Science and Business Media LLC, 2007-11-01)
The interaction between thermal convection and an external uniform magnetic field in the vertical is numerically simulated within a computational domain of a horizontally periodic convective box between upper and lower rigid plates. The numerical technique is based on a spectral element method developed earlier to simulate natural thermal convection. In this work, it is extended to a magnetoconvection problem. Its main features are the use of rescaled Legendre-Lagrangian polynomial interpolants in expanding...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Erdogan and F. S. Kadıoğlu, “T-shaped crack problem for bonded orthotropic layers,”
International Journal of Fracture
, pp. 273–300, 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41716.