Dynamic Inversion Based Control of a Missile with L1 Adaptive Control Augmentation

2010-09-10
Kutluay, Kadriye Tiryaki
Yavrucuk, İlkay
Dynamic model inversion is a popular method for flight controllers of air vehicles reducing the need for gain scheduling. However, imperfect model inversion, and non-accurate aerodynamic data may cause degradation of performance, and may lead to un-stability of the controller. The novel L1 adaptive control augmentation system offers an adaptive element to augment the control signal to account for matched and un-matched system uncertainties. In this paper, dynamic inversion controllers designed for the control of a missile are augmented with L1 adaptive controllers. The resulting controllers are examined through high fidelity, nonlinear, 6 D.o.F. simulations.

Suggestions

Online Dynamic Trim and Control Limit Estimation
Yavrucuk, İlkay (American Institute of Aeronautics and Astronautics (AIAA), 2012-9)
The online estimation of a maneuvering steady-state condition of an aircraft, called the dynamic trim, is used to estimate the allowable control travel during flight, a key information in pilot cueing for envelope limit protection. In this paper a new methodology is presented where adaptive models are used to estimate online local dynamic trim conditions, while requiring very limited a priori vehicle information. Adaptive neural networks are employed to enable online learning. The models are used to estimat...
Simulator based evaluation of adaptive envelope protection algorithms for active sidestick controllers
Ünal, Zeynep; Yavrucuk, İlkay; Department of Aerospace Engineering (2019)
In this thesis, a simulator environment with an active control system is developed for testing different force feedback maps for flight envelope limit avoidance. Previously developed flight envelope protection algorithm; named direct adaptive limit margin estimation method is improved with Single Hidden Layer Neural Network. Neural network based adaptive models are developed online using concurrent learning algorithm for weight update laws. Concurrent learning method uses both current data and recorded past...
Active Control of Smart Fin Model for Aircraft Buffeting Load Alleviation Applications
Chen, Yong; Ulker, Fatma Demet; Nalbantoglu, Volkan; Wickramasinghe, Viresh; Zimcik, David; Yaman, Yavuz (2009-11-01)
Following the program to lest a hybrid actuation system for high-agility aircraft buffeting load alleviation oil the full-scale F/A-18 vertical fin structure, an investigation has been performed to understand the aerodynamic effects of high-speed vortical flows on the dynamic characteristics of vertical fin structures. Extensive wind-tunnel tests have been conducted on a scaled model fill integrated with piezoelectric actuators and accelerometers to measure file aft-tip vibration responses under various fre...
Control allocation for a multi-rotor e-vtol aircraft using blended-inverse
Aksoy, Emre; Yavrucuk, İlkay; Department of Aerospace Engineering (2021-2-25)
In this thesis, the control allocation problem in a flight control system design for a multi-rotor eVTOL (electric Vertical Takeoff and Landing) aircraft is proposed. The vehicle consists of 20 identical rotors that are used as flight control actuators. The dynamic system is a MIMO (Multi Input Multi Output) system with more inputs than outputs, i.e. there are many solutions of the control problem. The objective is to find an efficient and redundant control solution that provides sufficient flight performan...
Flight control system design of an uncommon quadrotor aerial vehicle
Baskın, Mehmet; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2021-9-01)
In this thesis, design of a flight control system for an uncommon quadrotor aerial vehicle is discussed. This aerial vehicle consists of two counter-rotating big rotors on longitudinal axis to increase the lift capacity and flight endurance, and two counter-rotating small tilt rotors on lateral axis to stabilize the attitude. Firstly, full nonlinear dynamic model of this vehicle is obtained by using Newton-Euler formulation. Later, derived approximate linear model around hover is statically decoupled to sim...
Citation Formats
K. T. Kutluay and İ. Yavrucuk, “Dynamic Inversion Based Control of a Missile with L1 Adaptive Control Augmentation,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41736.