Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Discharge formula for rectangular sharp-crested weirs
Date
2011-04-01
Author
Aydın, İsmail
Altan Sakarya, Ayşe Burcu
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
Sharp-crested rectangular weirs used for discharge measurement in channels and laboratories are experimentally investigated. Height and width of weir plate are the two parameters characterizing the head-discharge relationship. Laboratory experiments are conducted by measuring the discharge and the head over the weir for variable weir heights and widths. Applicability of various formulations for the discharge coefficient are investigated. Experiments indicate that discharge is independent of weir height, when the weir is operated within an appropriate discharge range. Average velocity over the weir plotted against the weir head displays universal characteristics such that it can be used in the expression of discharge over the weir, eliminating the need for a discharge coefficient. The head-discharge relationship for a rectangular weir has distinct features for the partially contracted weirs and for the fully contracted slit weirs.
Subject Keywords
Open channel flow
,
Open channel flow
,
Discharge measurement
,
Rectangular weir
,
Sharp crested weirs
,
Flow measurement
URI
https://hdl.handle.net/11511/41871
Journal
FLOW MEASUREMENT AND INSTRUMENTATION
DOI
https://doi.org/10.1016/j.flowmeasinst.2011.01.003
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Weir velocity formulation for sharp-crested rectangular weirs
GHARAHJEH, Siamak; Aydın, İsmail; Altan Sakarya, Ayşe Burcu (2015-03-01)
Discharge in open channels can be measured by sharp-crested rectangular weirs. Generally, measured head over the weir crest is substituted into an empirical formula derived from energy considerations to calculate the discharge. Assumptions made on the derivation are taken into account by defining a discharge coefficient that fits into the experimental data. In this study, a physical quantity, the average velocity over the weir section defined as 'weir velocity' is directly formulated as function of weir geo...
Stream gauging by combined use of surface PTV and CFD techniques in channel flows
GHARAHJEH, Sİamak; Aydın, İsmail (2015-07-03)
A video imagery technique for free surface velocity measuring is presented and used to calculate discharge for uniform open channel flows numerically. When the surface velocities are measured and used as boundary conditions on the water surface, velocity field can then be solved numerically to satisfy the surface boundary conditions. This approach can provide a precise tool for velocity field, discharge and boundary shear distribution calculation. PTV or particle tracking velocimetry is implemented over the...
Flow measurement in open channels by combined use of free surface PİV and CFD
Gharahjeh, Siamak; Aydın, İsmail; Department of Civil Engineering (2016)
Stream discharge measurement in open channels is of great importance in hydraulic engineering. For many years, classical devices such as propellers, current meters and weirs have been used for this purpose. In recent times, non-intrusive methods such as PIV (Particle Image Velocimetry) and PTV (Particle Tracking Velocimetry) have been very popular as they are more practical and convenient to automatically collect water free surface velocity which is further analyzed for discharge measurement. Image processi...
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
Sert, Cüneyt (ASME International, 2003-5-20)
<jats:p>Numerical simulations of laminar, forced convection heat transfer for reciprocating, two-dimensional channel flows are performed as a function of the penetration length, Womersley (α) and Prandtl (Pr) numbers. The numerical algorithm is based on a spectral element formulation, which enables high-order spatial resolution with exponential decay of discretization errors, and second-order time-accuracy. Uniform heat flux and constant temperature boundary conditions are imposed on certain regions of the ...
Experimental investigation on sharp crested rectangular weirs
Şişman, H. Çiğdem; Altan Sakarya, Ayşe Burcu; Department of Civil Engineering (2009)
Sharp crested rectangular weirs used for discharge measurement purposes in open channel hydraulics are investigated experimentally. A series of experiments were conducted by measuring discharge and head over the weir for different weir heights for full width weir. It is seen that after a certain weir height, head and discharge relation does not change. Hence a constant weir height is determined. For that height; discharge and head over the weir are measured for variable weir width, starting from the full wi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Aydın and A. B. Altan Sakarya, “Discharge formula for rectangular sharp-crested weirs,”
FLOW MEASUREMENT AND INSTRUMENTATION
, pp. 144–151, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41871.