Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Green's matrix for a second-order self-adjoint matrix differential operator
Download
index.pdf
Date
2010-03-26
Author
Sisman, Tahsin Cagri
Tekin, Bayram
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
94
downloads
Cite This
A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.
Subject Keywords
Modelling and Simulation
,
Statistics and Probability
,
Mathematical Physics
,
General Physics and Astronomy
,
Statistical and Nonlinear Physics
URI
https://hdl.handle.net/11511/41874
Journal
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
DOI
https://doi.org/10.1088/1751-8113/43/12/125205
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Pseudospin symmetry solution of the Dirac equation with an angle-dependent potential
Berkdemir, Cueneyt; Sever, Ramazan (IOP Publishing, 2008-02-01)
The pseudospin symmetry solution of the Dirac equation for spin 1/2 particles moving within the Kratzer potential connected with an angle-dependent potential is investigated systematically. The Nikiforov-Uvarov method is used to solve the Dirac equation. All of the studies are performed for the exact pseudospin symmetry (SU2) case and also the exact spin symmetry case is given briefly in the appendix. Bound-state solutions are presented to discuss the contribution of the angle-dependent potential to the rel...
Two approximation schemes to the bound states of the Dirac-Hulthen problem
IKHDAİR, SAMEER; Sever, Ramazan (IOP Publishing, 2011-09-02)
The bound-state (energy spectrum and two-spinor wavefunctions) solutions of the Dirac equation with the Hulthen potential for all angular momenta based on the spin and pseudospin symmetry are obtained. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations. The orbital dependence (spin-orbit-and pseudospin-orbit-dependent coupling too singular 1/r(2)) of the Dirac equation are included to the solution by introducing a more accurate approximation scheme to deal with the cent...
Gardner's deformations of the Boussinesq equations
Karasu, Atalay (IOP Publishing, 2006-09-15)
Using the algebraic method of Gardner's deformations for completely integrable systems, we construct recurrence relations for densities of the Hamiltonians for the Boussinesq and the Kaup-Boussinesq equations. By extending the Magri schemes for these equations, we obtain new integrable systems adjoint with respect to the initial ones and describe their Hamiltonian structures and symmetry properties.
Finite action Yang-Mills solutions on the group manifold
Dereli, T; Schray, J; Tucker, RW (IOP Publishing, 1996-08-21)
We demonstrate that the left (and right) invariant Maurer-Cartan forms for any semi-simple Lie group enable solutions of the Yang-Mills equations to be constructed on the group manifold equipped with the natural Cartan-Killing metric. For the unitary unimodular groups the Yang-Mills action integral is finite for such solutions. This is explicitly exhibited for the case of SU(3).
EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2008-09-01)
We present the exact solution of the Klein Gordon equation in D-dimensions in the presence of the equal scalar and vector pseudoharmonic potential plus the ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bound state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this ring-shaped pseudoharmonic potential can be reduced to the three-dimensional (3D) pseudoharmonic solution once the coupling constant of the angular ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. C. Sisman and B. Tekin, “Green’s matrix for a second-order self-adjoint matrix differential operator,”
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
, pp. 0–0, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41874.