Green's matrix for a second-order self-adjoint matrix differential operator

Sisman, Tahsin Cagri
Tekin, Bayram
A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.


Pseudospin symmetry solution of the Dirac equation with an angle-dependent potential
Berkdemir, Cueneyt; Sever, Ramazan (IOP Publishing, 2008-02-01)
The pseudospin symmetry solution of the Dirac equation for spin 1/2 particles moving within the Kratzer potential connected with an angle-dependent potential is investigated systematically. The Nikiforov-Uvarov method is used to solve the Dirac equation. All of the studies are performed for the exact pseudospin symmetry (SU2) case and also the exact spin symmetry case is given briefly in the appendix. Bound-state solutions are presented to discuss the contribution of the angle-dependent potential to the rel...
Two approximation schemes to the bound states of the Dirac-Hulthen problem
IKHDAİR, SAMEER; Sever, Ramazan (IOP Publishing, 2011-09-02)
The bound-state (energy spectrum and two-spinor wavefunctions) solutions of the Dirac equation with the Hulthen potential for all angular momenta based on the spin and pseudospin symmetry are obtained. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations. The orbital dependence (spin-orbit-and pseudospin-orbit-dependent coupling too singular 1/r(2)) of the Dirac equation are included to the solution by introducing a more accurate approximation scheme to deal with the cent...
Gardner's deformations of the Boussinesq equations
Karasu, Atalay (IOP Publishing, 2006-09-15)
Using the algebraic method of Gardner's deformations for completely integrable systems, we construct recurrence relations for densities of the Hamiltonians for the Boussinesq and the Kaup-Boussinesq equations. By extending the Magri schemes for these equations, we obtain new integrable systems adjoint with respect to the initial ones and describe their Hamiltonian structures and symmetry properties.
Finite action Yang-Mills solutions on the group manifold
Dereli, T; Schray, J; Tucker, RW (IOP Publishing, 1996-08-21)
We demonstrate that the left (and right) invariant Maurer-Cartan forms for any semi-simple Lie group enable solutions of the Yang-Mills equations to be constructed on the group manifold equipped with the natural Cartan-Killing metric. For the unitary unimodular groups the Yang-Mills action integral is finite for such solutions. This is explicitly exhibited for the case of SU(3).
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2008-09-01)
We present the exact solution of the Klein Gordon equation in D-dimensions in the presence of the equal scalar and vector pseudoharmonic potential plus the ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bound state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this ring-shaped pseudoharmonic potential can be reduced to the three-dimensional (3D) pseudoharmonic solution once the coupling constant of the angular ...
Citation Formats
T. C. Sisman and B. Tekin, “Green’s matrix for a second-order self-adjoint matrix differential operator,” JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, pp. 0–0, 2010, Accessed: 00, 2020. [Online]. Available: