Gardner's deformations of the Boussinesq equations

Download
2006-09-15
Using the algebraic method of Gardner's deformations for completely integrable systems, we construct recurrence relations for densities of the Hamiltonians for the Boussinesq and the Kaup-Boussinesq equations. By extending the Magri schemes for these equations, we obtain new integrable systems adjoint with respect to the initial ones and describe their Hamiltonian structures and symmetry properties.
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL

Suggestions

Finite action Yang-Mills solutions on the group manifold
Dereli, T; Schray, J; Tucker, RW (IOP Publishing, 1996-08-21)
We demonstrate that the left (and right) invariant Maurer-Cartan forms for any semi-simple Lie group enable solutions of the Yang-Mills equations to be constructed on the group manifold equipped with the natural Cartan-Killing metric. For the unitary unimodular groups the Yang-Mills action integral is finite for such solutions. This is explicitly exhibited for the case of SU(3).
Green's matrix for a second-order self-adjoint matrix differential operator
Sisman, Tahsin Cagri; Tekin, Bayram (IOP Publishing, 2010-03-26)
A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.
EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2008-09-01)
We present the exact solution of the Klein Gordon equation in D-dimensions in the presence of the equal scalar and vector pseudoharmonic potential plus the ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bound state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this ring-shaped pseudoharmonic potential can be reduced to the three-dimensional (3D) pseudoharmonic solution once the coupling constant of the angular ...
On the integrability of a class of Monge-Ampere equations
BRUNELLI, J C; GÜRSES, METİN; Zheltukhın, Kostyantyn (World Scientific Pub Co Pte Lt, 2001-04-01)
We give the Lax representations for the elliptic, hyperbolic and homogeneous second order Monge-Ampere equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Monge-Ampere equations. Local as well nonlocal conserved densities are obtained.
Symmetry reductions of a Hamilton-Jacobi-Bellman equation arising in financial mathematics
Naicker, V; Andriopoulos, K; Leach, PGL (Informa UK Limited, 2005-05-01)
We determine the solutions of a nonlinear Hamilton-Jacobi-Bellman equation which arises in the modelling of mean-variance hedging subject to a terminal condition. Firstly we establish those forms of the equation which admit the maximal number of Lie point symmetries and then examine each in turn. We show that the Lie method is only suitable for an equation of maximal symmetry. We indicate the applicability of the method to cases in which the parametric function depends also upon the time.