Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Finite action Yang-Mills solutions on the group manifold
Download
index.pdf
Date
1996-08-21
Author
Dereli, T
Schray, J
Tucker, RW
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
233
views
0
downloads
Cite This
We demonstrate that the left (and right) invariant Maurer-Cartan forms for any semi-simple Lie group enable solutions of the Yang-Mills equations to be constructed on the group manifold equipped with the natural Cartan-Killing metric. For the unitary unimodular groups the Yang-Mills action integral is finite for such solutions. This is explicitly exhibited for the case of SU(3).
Subject Keywords
Mathematical Physics
,
General Physics and Astronomy
,
Statistical and Nonlinear Physics
URI
https://hdl.handle.net/11511/66551
Journal
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
DOI
https://doi.org/10.1088/0305-4470/29/16/021
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Symmetry reductions of a Hamilton-Jacobi-Bellman equation arising in financial mathematics
Naicker, V; Andriopoulos, K; Leach, PGL (Informa UK Limited, 2005-05-01)
We determine the solutions of a nonlinear Hamilton-Jacobi-Bellman equation which arises in the modelling of mean-variance hedging subject to a terminal condition. Firstly we establish those forms of the equation which admit the maximal number of Lie point symmetries and then examine each in turn. We show that the Lie method is only suitable for an equation of maximal symmetry. We indicate the applicability of the method to cases in which the parametric function depends also upon the time.
Gardner's deformations of the Boussinesq equations
Karasu, Atalay (IOP Publishing, 2006-09-15)
Using the algebraic method of Gardner's deformations for completely integrable systems, we construct recurrence relations for densities of the Hamiltonians for the Boussinesq and the Kaup-Boussinesq equations. By extending the Magri schemes for these equations, we obtain new integrable systems adjoint with respect to the initial ones and describe their Hamiltonian structures and symmetry properties.
Discrete symmetries and nonlocal reductions
GÜRSES, METİN; Pekcan, Asli; Zheltukhın, Kostyantyn (Elsevier BV, 2020-01-31)
We show that nonlocal reductions of systems of integrable nonlinear partial differential equations are the special discrete symmetry transformations.
EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2008-09-01)
We present the exact solution of the Klein Gordon equation in D-dimensions in the presence of the equal scalar and vector pseudoharmonic potential plus the ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bound state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this ring-shaped pseudoharmonic potential can be reduced to the three-dimensional (3D) pseudoharmonic solution once the coupling constant of the angular ...
Green's matrix for a second-order self-adjoint matrix differential operator
Sisman, Tahsin Cagri; Tekin, Bayram (IOP Publishing, 2010-03-26)
A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Dereli, J. Schray, and R. Tucker, “Finite action Yang-Mills solutions on the group manifold,”
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
, pp. 5001–5005, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66551.