Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production

Download
2013-01-01
Alanya, S.
Yılmazel Tokel, Yasemin Dilşad
Park, C.
Willis, J. L.
Keaney, J.
Kohl, P. M.
Hunt, J. A.
Duran, M.
The objective of the study was to identify the impact of co-digesting clarifier skimmings on the overall methane generation from the treatment plant and additional energy value of the increased methane production. Biogas production from co-digesting clarifier skimmings and sewage sludge in pilot-scale fed-batch mesophilic anaerobic digesters has been evaluated. The digester was fed with increasing quantities of clarifier skimmings loads: 1.5, 2.6, 3.5 and 7.0 g COD equivalent/(L.d) (COD: chemical oxygen demand). Average volatile solids reduction of 65% was achieved in the scum-fed digester, compared with 51% in the control digester. Average 69% COD removal was achieved at highest scum loading (7 g COD eq/(L.d)) with approximate methane yield of 250 L CH4/kg COD fed (4 ft(3)/lb COD fed). The results show that scum as co-substrate in anaerobic digestion systems improves biogas yields while a 29% increase in specific CH4 yield could be achieved when scum load is 7 g COD eq/(L.d). Based on the pilot-scale study results and full-scale data from South East Water Pollution Control Plant and Northeast Water Pollution Control Plant the expected annual energy recovery would be approximately 1.7 billion BTUs or nearly 0.5 million kWh.
WATER SCIENCE AND TECHNOLOGY

Suggestions

Anaerobic-Fed and Sequencing-Batch Treatment of Sugar-Beet Processing Wastes: A Comparative Study
Alkaya, Emrah; Demirer, Göksel Niyazi (Wiley, 2011-03-01)
The aim of this study was to compare a batch-fed continuously mixed anaerobic reactor (FCMR) with an anaerobic sequencing batch reactor (ASBR), in terms of waste stabilization and methane production treating sugar-beet processing wastewater and beet-pulp simultaneously. A reactor was operated as FCMR, which then was operated as an ASBR by changing operational conditions after the steady-state was reached. Although the hydraulic retention time value of the ASBR configuration was lower (8 days) than that of t...
Comparison of iscst3 and aermod air dispersion models: case study of cayirhan thermal power plant
Dölek, Emre; Atımtay, Aysel; Department of Environmental Engineering (2007)
In this study, emission inventory was prepared and pollutant dispersion studies were carried out for the area around Çayırhan Thermal Power Plant to determine the effects of the plant on the environment. Stack gas measurement results were used for the emissions from the power plant and emission factors were used for calculating the emissions from residential sources and coal stockpiles in the study region. Ground level concentrations of SO2, NOx and PM10 were estimated by using EPA approved dispersion model...
Modeling biogeochemical dynamics in porous media: Practical considerations of pore scale variability, reaction networks, and microbial population dynamics in a sandy aquifer
King, E. L.; Tuncay, Kağan; Ortoleva, P.; Meile, C. (Elsevier BV, 2010-03-01)
Prediction of the fate and environmental impacts of groundwater contaminants requires the identification of relevant biogeochemical processes and necessitates the macroscopic representation of microbial activity occurring at the microscale. Using a well-studied sandy aquifer environment, we evaluate the importance of pore distribution on organic matter respiration in a porous medium environment by performing spatially explicit simulations of microbial metabolism at the sub-millimeter scale. Model results us...
Screening and In Situ Monitoring of Potential Petroleum Hydrocarbon Degraders in Contaminated Surface Water
İçgen, Bülent (Wiley, 2017-01-01)
Incomplete combustion of fossil fuels and other anthropogenic activities result in contamination of surface water by petroleum hydrocarbons. These pollutants can have severe effects on aquatic life and human health. In petroleum bioremediation, oil degrading microorganisms are utilized to remove petroleum hydrocarbons from polluted water. However, monitoring and identifying microorganisms capable of degrading petroleum hydrocarbons is very challenging. In the current study, bacteria isolated from a river al...
Performance of ozone and peroxone on the removal of endocrine disrupting chemicals (EDCs) coupled with cost analysis
Ölmez Hancı, Tuğba; Dogruel, S.; Emek, A. D. Allar; Yilmazer, C. Eropak; Cinar, S.; Kiraz, O.; Citil, E.; Orhon, A. Koc; Siltu, E.; Gucver, S. M.; Ozgun, O. Karahan; Tanık, Ayşe Gül; Yetiş, Ülkü (IWA Publishing, 2020-08-01)
Micropollutants such as endocrine disruptors are one of the most important groups of chemicals polluting water resources. Conventional treatment systems may not be effective for the removal of endocrine disrupting chemicals (EDCs), and the fate of these chemicals should be carefully monitored in the effluent of wastewater treatment plants (WWTPs). Additional treatment methods such as advanced oxidation processes can be used for the removal of endocrine disruptors. This study presents the existence of endocr...
Citation Formats
S. Alanya et al., “Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production,” WATER SCIENCE AND TECHNOLOGY, pp. 174–179, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41911.