Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Municipal solid waste management with cost minimization and emission control objectives: A case study of Ankara
Date
2020-01-01
Author
Mohsenizadeh, Melika
Tural, Mustafa Kemal
Kentel, Elçin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
23
views
0
downloads
Proper management of municipal solid waste (MSW) has been a crucial aspect of every society due to its social, environmental, and economic impacts. Operations research techniques have frequently focused on cost minimization objectives in locational planning of municipal solid waste management (MSWM) systems. However, transportation constitutes an integral part of this system producing a considerable amount of greenhouse gas (GHG) emissions. Therefore, sustainable management of this system with GHG emissions minimization considerations is necessary to preserve the resources and protect the environment. In this study, a bi-objective optimization model is proposed to minimize system cost and carbon dioxide (CO2) emission resulting from transportation activities in locational planning of MSWM systems. The proposed model is applied to MSWM system of Ankara to introduce transfer stations (TSs). Two extensions of the current system are examined, namely, the extended and hybrid systems, where MSW is only transported through TSs in the former, while direct shipments are also allowed in the latter. For both extensions, it is observed that with no or little increase in cost, considerable savings in emission can be achieved. Simulation analyses show that CO2 emission and cost are not subject to a considerable change due to speed variations of vehicles.
Subject Keywords
Renewable Energy, Sustainability and the Environment
,
Geography, Planning and Development
,
Civil and Structural Engineering
,
Transportation
URI
https://hdl.handle.net/11511/42057
Journal
Sustainable Cities and Society
DOI
https://doi.org/10.1016/j.scs.2019.101807
Collections
Department of Industrial Engineering, Article