Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Temperature dependent band gap in SnS2xSe(2-2x) (x=0.5) thin films
Date
2020-08-01
Author
Delice, S.
Isik, M.
Gullu, H. H.
Terlemezoglu, M.
Surucu, O. Bayrakli
Hasanlı, Nızamı
Parlak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Structural and optical properties of SnS2xSe(2-2x) thin films grown by magnetron sputtering method were investigated for composition of x = 0.5 (SnSSe) in the present study. X-ray diffraction, energy dispersive X-ray spectroscopy, atomic force microscopy and scanning electron microscopy methods were used for structural characterization while temperature-dependent transmission measurements carried out at various temperatures in between 10 and 300 K were accomplished for optical investigations. X-ray diffraction pattern of studied composition presented peaks at positions which are between those of SnSe2 and SnS2. Transmittance spectra recorded at all applied temperatures were analyzed using well-known Tauc relation. Analyses revealed the direct band gap energy value of SnSSe thin films as 1.75 eV at room temperature. Change of band gap energy as a response to varying temperature were discussed in the study by utilizing Varshni relation. It was shown that variation of gap energy values was well-matched with the Varshni's empirical formula. Energy band gap at absolute zero and rate of change of band gap with temperature were found to be 1.783 eV and -2.1 x 10(-4) eV K-1, respectively.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/42079
Journal
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
DOI
https://doi.org/10.1016/j.mssp.2020.105083
Collections
Department of Physics, Article