Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A continuum model for dephasing in mesoscopic systems
Date
2011-08-01
Author
Şenozan, Selma
Turgut, Sadi
Tomak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
121
views
0
downloads
Cite This
A model of continuous dephasing for one-dimensional mesoscopic conductors is proposed. The model is based on Buttiker's fictitious-probe model which is extended by attaching an infinite number of probes uniformly to various points on the conductor. The associated scattering problem is then solved. When the continuum limit is taken, it becomes possible to describe the dephasing as taking place everywhere. The dephasing rate enters into the model as an adjustable parameter. The effect of dephasing on the conductance for a double-barrier system is also studied numerically.
Subject Keywords
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/42114
Journal
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES
DOI
https://doi.org/10.1016/j.physe.2011.06.025
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
A numerically stable algorithm for scattering from several circular cylinders including metamaterials with different boundary conditions
SEVER, EMRAH; DİKMEN, FATİH; TUCHKİN, YURY ALEXANDEROVİCH; Sabah, Cumali (Elsevier BV, 2018-01-01)
The analytically obtained algebraic equation systems for the TM/TE-z polarized monochromatic waves scattering from eccentrically layered circular cylinders are ill-conditioned for numerical calculations. Therefore, such ill conditioned systems must be regularized for reliable numerical results. Here, the steps of the regularization of the ill conditioned system obtained for the scattered field from a circular metamaterial cylinder includes three parallel circular cylinders: a dielectric, an impedance and a ...
A NEW CLASS OF EMPIRICAL MANY-BODY POTENTIAL-ENERGY FUNCTIONS FOR BULK AND CLUSTER PROPERTIES
Erkoç, Şakir (Wiley, 1992-06-01)
A new empirical many-body potential energy function (PEF) is proposed, which comprices two- and three-body atomic interactions. The two-body potential is a kind of hybrid function and the three-body potential is formed by additive and nonadditive functions. The additive part is expressed in terms of two-body interactions, and the nonadditive part is expressed as triple-dipole function. The PEF satisfies bulk cohesive energy, bulk stability condition, and bulk modulus. The PEF is parameterized for gold, silv...
Extension of forward-backward method with DFT-based acceleration algorithm for the efficient analysis of large periodic arrays with arbitrary boundaries
Aydın Çivi, Hatice Özlem; Chou, HT (Wiley, 2005-11-05)
An extension of the discrete Fourier transform (DFT)-based forward-backward algorithm is developed using the virtual-element approach to provide a fast and accurate analysis of electromagnetic radiation/scattering front electrically large, planar, periodic, finite (phased) arrays with arbitrary boundaries. Both the computational complexity and storage requirements of this approach are O(N-tot) (N-tot is the total number of unknowns). The numerical results for both printed and freestanding dipole array's wit...
A NEW EMPIRICAL MANY-BODY POTENTIAL-ENERGY FUNCTION - APPLICATION TO MICROCLUSTERS
Erkoç, Şakir (Wiley, 1989-04-01)
A new empirical many‐body potential energy function is proposed which comprises two‐ and three‐body interactions. The two‐body potential is a kind of hybrid function and the three‐body potential is expressed in terms of the two‐body interactions. The parameters of the potential energy function can be easily evaluated using dimer data and the bulk cohesive energy of the system considered. The proposed potential energy function is parameterized for several elements in f.c.c., b.c.c., and diamond structures an...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Şenozan, S. Turgut, and M. Tomak, “A continuum model for dephasing in mesoscopic systems,”
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES
, pp. 1845–1852, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42114.