3D Simulation of Dynamic Delamination in Curved Composite Laminates

Ata, Tamer Tahir
Çöker, Demirkan
In this study, dynamic fracture of curved carbon fiber reinforced plastic (CFRP) laminates under quasi-static loading is investigated using explicit three dimensional (3D) finite element method in conjunction with Cohesive Zone Modelling (CZM). The simulations are based on the experimental studies conducted by Tasdemir (2018). Three dimensional finite element models of two different ply architectures (unidirectional and fabric laminate) are generated corresponding to the experimental configurations. The computational results show good correlation with the experimental results in which a major delamination is observed approximately at 35% of the thickness for both unidirectional and fabric curved laminates. It is also observed that delamination initiates at the half width of the laminate for both specimen configurations. For the fabric laminate, it is interesting to observe that the delamination initiates at the center of the width instead of the free-edges where a material mismatch exists between different layer orientations (Cao et al., 2019; Lagunegrand et al., 2006; Solis et al., 2018). Finite element analysis results are consistent with experiments in terms of main delamination location in thickness direction. (c) 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the 1st International Workshop on Plasticity, Damage and Fracture of Engineering Materials organizers.


Development of a Micromechanics Based Cohesive Zone Model and Application for Ductile Fracture
Yalçınkaya, Tuncay; Tandoğan, İzzet Tarık (2019-01-01)
In this paper, derivation and implementation of a micromechanically motivated traction separation law for cohesive zone modeling of ductile fracture is discussed. The formulation of the framework is based on the growth of pores in an array of representative volume elements where pores are idealized as cylinders. Two relations are derived under normal and shear loading for mode-I and mixed-mode respectively, based on the upper bound for a perfectly plastic material (Yalcinkaya and Cocks (2015), Yalcinkaya an...
Ductile fracture of metallic materials through micromechanics based cohesive zone elements
Tandoğan, İzzet Tarık; Yalçınkaya, Tuncay; Department of Aerospace Engineering (2020-9)
Gaining popularity after its coupling with the finite element method, cohesive zone modelling has been used extensively to model fracture, especially in delamination problems. Its constitutive relations, i.e. traction-separation laws, are mostly derived phenomenologically without considering the physical mechanisms of crack initiation and propagation. The approach could also be used for ductile fracture where the micromechanics of the phenomenon is explained by nucleation, growth and coalescence of pores. I...
Physics Based Formulation of a Cohesive Zone Model for Ductile Fracture
Yalçınkaya, Tuncay (2015-07-01)
This paper addresses a physics based derivation of mode-I and mode-II traction separation relations in the context of cohesive zone modeling of ductile fracture of metallic materials. The formulation is based on the growth of an array of pores idealized as cylinders which are considered as therepresentative volume elements. An upper bound solution is applied for the deformation of the representative volume element and different traction-separation relations are obtained through different assumptions.
Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method
Daphalapurkar, Nitin P.; Lu, Hongbing; Çöker, Demirkan; Komanduri, Ranga (Springer Science and Business Media LLC, 2007-01-01)
Dynamic crack growth is simulated by implementing a cohesive zone model in the generalized interpolation material point (GIMP) method. Multiple velocity fields are used in GIMP to enable handling of discrete discontinuity on either side of the interface. Multilevel refinement is adopted in the region around the crack-tip to resolve higher strain gradients. Numerical simulations of crack growth in a homogeneous elastic solid under mode-II plane strain conditions are conducted with the crack propagating along...
Computational modeling of thermal and shrinkage-induced cracking in concrete
Ghasabeh, Mehran; Göktepe, Serdar; Yaman, İsmail Özgür; Department of Civil Engineering (2021-3-3)
This work is concerned with the computational modeling of thermal and shrinkage-induced cracking in concrete. Thermal and hygral gradients develop within concrete structures of varying sizes and aspect ratios due to the intrinsic physicochemical phenomena accompanied by adverse environmental effects. These spatio-temporal gradients invariably result in uneven volumetric deformations that can cause stress concentrations when the concrete is sufficiently rigid. Then, when the gained tensile strength is lower ...
Citation Formats
T. T. Ata and D. Çöker, “3D Simulation of Dynamic Delamination in Curved Composite Laminates,” 2019, vol. 21, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42115.