Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method

2007-01-01
Daphalapurkar, Nitin P.
Lu, Hongbing
Çöker, Demirkan
Komanduri, Ranga
Dynamic crack growth is simulated by implementing a cohesive zone model in the generalized interpolation material point (GIMP) method. Multiple velocity fields are used in GIMP to enable handling of discrete discontinuity on either side of the interface. Multilevel refinement is adopted in the region around the crack-tip to resolve higher strain gradients. Numerical simulations of crack growth in a homogeneous elastic solid under mode-II plane strain conditions are conducted with the crack propagating along a weak interface. A parametric study is conducted with respect to varying impact speeds ranging from 5 m/s to 60 rn/s and cohesive strengths from 4 to 35 MPa. Numerical results are compared qualitatively with the dynamic fracture experiments of Rosakis et al. [(1999) Science 284:1337-1340]. The simulations are capable of handling crack growth with crack-tip velocities in both sub-Rayleigh and intersonic regimes. Crack initiation and propagation are the natural outcome of the simulations incorporating the cohesive zone model. For various impact speeds, the sustained crack-tip velocity falls either in the sub-Rayleigh regime or in the region between root 2c(S) (c(S) is the shear wave speed) and C-D (C-D is the dilatational wave speed) of the bulk material. The Burridge-Andrews mechanism for transition of the crack-tip velocity from sub-Rayleigh to intersonic speed of the bulk material is observed for impact speeds ranging from 9.5 to 60 m/s (for normal and shear cohesive strengths of 24 MPa). Within the intersonic regime, sustained crack-tip velocities between 1.66 cS (or 0.82 C-D) and 1.94 cS (or 0.95 C-D) were obtained. For the cases simulated in this work, within the stable intersonic regime, the lowest intersonic crack-tip velocity obtained was 1.66 cS (or 0.82 C-D).
INTERNATIONAL JOURNAL OF FRACTURE

Suggestions

Interface crack problems in graded orthotropic media: Analytical and computational approaches
Dağ, Serkan; Erdogan, F (Springer Science and Business Media LLC, 2004-11-01)
Interface crack problems in graded orthotropic media are considered using analytical and computational techniques. In the analytical formulation an interface crack between a graded orthotropic coating and a homogeneous orthotropic substrate is considered. The principal axes of orthotropy are assumed to be parallel and perpendicular to the crack plane. Mechanical properties of the medium are assumed to be continuous with discontinuous derivatives at the interface. The problem is formulated in terms of the av...
Implementation of physical boundary conditions into computational domain in modelling of oscillatory bottom boundary layers
Tiğrek, Şahnaz; Yılmaz, Bilgi (Wiley, 2010-11-30)
This paper discusses the importance of realistic implementation of the physical boundary conditions into computational domain for the simulation of the oscillatory turbulent boundary layer flow over smooth and rough flat beds. A mathematical model composed of the Reynolds averaged Navier-Stokes equation, turbulent kinetic energy (k) and dissipation rate of the turbulent kinetic energy (epsilon) has been developed. Control-volume approach is used to discretize the governing equations to facilitate the numeri...
3D Simulation of Dynamic Delamination in Curved Composite Laminates
Ata, Tamer Tahir; Çöker, Demirkan (Elsevier BV; 2019-01-01)
In this study, dynamic fracture of curved carbon fiber reinforced plastic (CFRP) laminates under quasi-static loading is investigated using explicit three dimensional (3D) finite element method in conjunction with Cohesive Zone Modelling (CZM). The simulations are based on the experimental studies conducted by Tasdemir (2018). Three dimensional finite element models of two different ply architectures (unidirectional and fabric laminate) are generated corresponding to the experimental configurations. The com...
Three dimensional fracture analysis of FGM coatings under thermomechanical loading
Yildirim, B; Dağ, Serkan; Erdogan, E (Springer Science and Business Media LLC, 2005-04-01)
The main objective of this study is to examine the three dimensional surface crack problems in functionally graded coatings subjected to mode I mechanical or transient thermal loading. The surface cracks are assumed to have a semi-elliptical crack front profile of arbitrary aspect ratio. The cracks are embedded in the functionally graded material (FGM) coating which is perfectly bonded to a homogeneous substrate. A three dimensional finite element method is used to solve the thermal and structural problems....
On efficient use of simulated annealing in complex structural optimization problems
Hasançebi, Oğuzhan (Springer Science and Business Media LLC, 2002-01-01)
The paper is concerned with the efficient use of simulated annealing (SA) in structural optimization problems of high complexity. A reformulation of the working mechanism of the Boltzmann parameter is introduced to accelerate and enhance the general productivity of SA in terms of convergence reliability. Two general and complementary parameters, referred as "weighted Boltzmann parameter" and "critical Boltzmann parameter," are proposed, Several alternative methodologies are suggested for these two parameter...
Citation Formats
N. P. Daphalapurkar, H. Lu, D. Çöker, and R. Komanduri, “Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method,” INTERNATIONAL JOURNAL OF FRACTURE, pp. 79–102, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47363.