Hide/Show Apps

Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis

Royston, Thomas J.
Yazıcıoğlu, Yiğit
Loth, Francis
The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is, studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and. dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the, buried sources are formulated and compared with numerical finite element simulations and, experimental studies on finite dimension phantom:models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium. model agree well with numerically obtained "exact" half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.