Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis
Date
2003-02-01
Author
Royston, Thomas J.
Yazıcıoğlu, Yiğit
Loth, Francis
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
177
views
0
downloads
Cite This
The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is, studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and. dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the, buried sources are formulated and compared with numerical finite element simulations and, experimental studies on finite dimension phantom:models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium. model agree well with numerically obtained "exact" half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.
Subject Keywords
Acoustics and Ultrasonics
,
Arts and Humanities (miscellaneous)
URI
https://hdl.handle.net/11511/42132
Journal
Journal of the Acoustical Society of America
DOI
https://doi.org/10.1121/1.1536153
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction
Yazıcıoğlu, Yiğit; Spohnholtz, Todd; Martin, Bryn; Loth, Francis; Bassiouny, Hisham S. (Acoustical Society of America (ASA), 2005-08-01)
The vibration of a thin-walled cylindrical, compliant viscoelastic tube with internal turbulent flow due to an axisymmetric constriction is studied theoretically and experimentally. Vibration of the tube is considered with internal fluid coupling only, and with coupling to internal-flowing fluid and external stagnant fluid or external tissue-like viscoelastic material. The theoretical analysis includes the adaptation of a model for turbulence in the internal fluid and its vibratory excitation of and interac...
Diffusion Equation-Based Finite Element Modeling of a Monumental Worship Space
Gul, Zuhre Su; Xiang, Ning; Çalışkan, Mehmet (World Scientific Pub Co Pte Lt, 2017-12-01)
In this work, a diffusion equation model (DEM) is applied to a room acoustics case for in-depth sound field analysis. Background of the theory, the governing and boundary equations specifically applicable to this study are presented. A three-dimensional geometric model of a monumental worship space is composed. The DEM is solved over this model in a finite element framework to obtain sound energy densities. The sound field within the monument is numerically assessed; spatial sound energy distributions and f...
A refined dynamic theory for viscoelastic cylindrical shells and cylindrical laminated composites, Part 2: An application
Birlik, G.A.; Mengi, Yalçın (Elsevier BV, 1989-4)
In this study, the general approximate theory developed in Part 1 for shells is assessed for axially symmetric elastic waves propagating in a closed circular cylindrical shell (hollow rod). The spectra predicted by zeroth and second order approximate theories are determined for various values of shell thicknesses and the Poisson ratios and they are compared with those of exact theory. It is found that the agreement between the two is good. Approximate and exact cut-off frequencies match almost exactly. The ...
THE HARMONIC RESPONSE OF UNIFORM BEAMS ON MULTIPLE LINEAR SUPPORTS - A FLEXURAL WAVE ANALYSIS
MEAD, DJ; Yaman, Yavuz (Elsevier BV, 1990-09-22)
A wave approach is developed for the exact analysis of the harmonic response of uniform finite beams on multiple supports. The beam may be excited by single or multi-point harmonic forces or moments; its supports may have general linear characteristics which may include displacement-rotation coupling. Use is made of the harmonic response function for an infinite beam subjected to a single-point harmonic force or moment. The unknowns of the finite beam problem are the support reaction forces/moments and the ...
Stability and breathing motions of pressurized compressible hyperelastic spherical shells
Akyüz, Uğurhan (Elsevier BV, 2001-10-18)
The stability of homogeneous, isotropic, compressible, hyperelastic, thick spherical shells subjected to external dead-load traction are investigated within the context of the finite elasticity theory. The stability of the finitely deformed state and small, free, radial vibrations about this state are investigated using the theory of small deformations superposed on large elastic deformations. The frequencies of small free vibrations about the pre-stressed state are obtained numerically. The loss of stabili...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. J. Royston, Y. Yazıcıoğlu, and F. Loth, “Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis,”
Journal of the Acoustical Society of America
, pp. 1109–1121, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42132.