Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A vibration-based electromagnetic energy harvester system with highly efficient interface electronics
Date
2011-09-01
Author
Rahimi, Arian
Zorlu, Özge
Muhtaroǧlu, Ali
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
This paper presents a vibration-based electromagnetic (EM) energy harvester system utilizing novel and highly efficient interface electronics. The energy harvesting module up-converts the environmental low frequency vibrations for increased AC power output. The interface circuit employs a boot-strap technique to reduce the threshold voltage of the rectifiers further increasing the power conversion efficiency of the overall system. The complete system, composed of an energy harvester module, and a compact 0.35 μm CMOS IC, was fully validated. It is capable of powering a 1.5V, 15μA load with 65% conversion efficiency, and 5% ripple, at an external vibration frequency of 10Hz. The recorded efficiency is the highest achieved value for vibration-based EM energy harvesters with passive rectification to the best of our knowledge.
Subject Keywords
Rectifiers
,
Threshold voltage
,
Transistors
,
Vibrations
,
Energy harvesting
,
Power conversion
,
Integrated circuits
URI
https://hdl.handle.net/11511/42262
DOI
https://doi.org/10.1109/transducers.2011.5969876
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A 180 nm Self-Powered Rectifier Circuit for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Külah, Haluk; Muhtaroglu, Ali (2013-12-18)
This paper presents a new self-powered low voltage rectifier implementation for vibration-based electromagnetic (EM) energy harvesters. The proposed circuit is an improved version of the previously reported rectifier, which was designed in TSMC 90 nm CMOS technology. The circuit is designed in lower cost UMC 180 nm CMOS technology, and uses a passive AC/DC quadrupler structure to supply the external power of the utilized active components. Simulation results show that the maximum power conversion efficiency...
A Self-Powered Rectifier Circuit for Low-Voltage Energy Harvesting Applications
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
This paper presents a fully self-powered low voltage and low power active rectifier circuit for vibration-based electromagnetic (EM) energy harvesters. A passive AC/DC doubler is used to provide a supply voltage for the active rectifier circuit. The proposed circuit is designed using standard 90 nm TSMC CMOS technology. The simulation results show that the proposed active rectifier circuit has voltage conversion ratio higher than 150% when the input peak voltage is more than 100 mV at open-load condition. T...
A Compact Electromagnetic Vibration Harvesting System with High Performance Interface Electronics
Rahimi, A.; Zorlu, O.; Muhtaroglu, A.; Külah, Haluk (2011-09-07)
A compact vibration-based electromagnetic (EM) energy harvesting system utilizing high performance interface electronics, has been presented. The energy harvester module consists of an AA-battery sized cylinder tube with an external coil winding, a fixed magnet at the bottom of the tube, and a free magnet inside. The transducer is able to operate at low external vibration frequencies between 9.5 and 12 Hz. The generated AC voltage is converted to DC using a custom rectifier circuit that utilizes a gate cros...
An efficient integrated interface electronics for electromagnetic energy harvesting from low voltage sources
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2013-12-01)
This paper presents a fully-integrated self-powered interface circuit for efficient rectification of the signals generated by vibration based low-voltage electromagnetic (EM) energy harvesters. The circuit utilizes an improved AC/DC doubler structure with active diodes to minimize the forward bias voltage drop for enhancing the rectifier efficiency. The comparators in the active diodes are powered internally by another passive AC/DC doubler with diode connected transistors. The performance is maximized thro...
An adaptive piezoelectric energy harvesting interface circuit with a novel peak detector
Chamanian, S.; Zorlu, O.; Külah, Haluk; Muhtaroglu, A. (2015-03-26)
This paper presents a fully self-powered interface circuit with a novel peak detector for piezoelectric energy harvesters (PEH). This circuit can be utilized to scavenge energy from low power environmental vibrations in 10s of mu W range. Synchronous switching technique is used to extract maximum available power where switching instants are detected independently from excitation changes of the PEH. The proposed peak detector senses voltages higher than power supply for a wide frequency range of input vibrat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Rahimi, Ö. Zorlu, A. Muhtaroǧlu, and H. Külah, “A vibration-based electromagnetic energy harvester system with highly efficient interface electronics,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42262.